
Theory of interactive computation David Keil 11/22/02 1

David Keil NES/MAA meeting, 11/22/02 1

Toward a theory of
interactive computation

David Keil
University of Connecticut

and Framingham State College

Joint work with Dina Goldin ,
University of Connecticut

David Keil NES/MAA meeting, 11/22/02 2

Algorithmic computation
• Algorithm: an old mathematical concept (Al Kuwarizmi,

Baghdad, ca. 800 A.D.)

• Turing machines: identified with the notion of
algorithms (Turing, 1936)

• Features of algorithmic computation: finite input,
followed by finite computation, followed by finite

output

• “The classical TM paradigm may no longer be fully
appropriate to capture all the features of present-day
computing” (Van Leeuwen-Wiedermann, 2000)

question answer

David Keil NES/MAA meeting, 11/22/02 3

Interactive computation
• Feature of computing today: Computation as an ongoing

service, not assumed to terminate

• Must solve problems whose inputs
cannot be completely specified a priori

• Dynamic input and output during computation

• Persistence of state between interaction steps

• Environment is an active partner in computation

David Keil NES/MAA meeting, 11/22/02 4

Overview
• Algorithmic computation and the paradigm shift to

interaction

• Models of algorithmic computation
- Deterministic finite automata
- Turing machines

• Models of interaction
- Finite transducers
- Persistent Turing Machines,

Interactive Transition Systems

• Streams and coinduction

• State equivalence and minimality

input0

state0 state1 state2

input1 input2

output0 output1 output2

S S S

David Keil NES/MAA meeting, 11/22/02 5

The paradigm shift to interaction

What about theory of computation?

Open systemsClosed systems

Emergent behaviorCompositional behavior

Adaptation, controlRule-based reasoning

Agent-oriented AILogic and search in AI

Object-oriented designStructured design

Providing a service over

time (by agents)

Transforming input

to output (by TMs)

InteractiveAlgorithmic

David Keil NES/MAA meeting, 11/22/02 6

Finite automata, finite transducers
• Deterministic finite automaton: 〈Q, Σ, δ, q0,F〉 where

Q is a finite set of states, Σ an input alphabet, δ : Q ×
Σ → Q a transition function, q0 a start state, F a set
of accepting states

• DFAs are recognizers of sets of finite sequences

• Mealy machine: 〈Q, Σ, Γ, δ, q0〉 where Γ is a finite
output alphabet, δ : Q × Σ → Q × Γ is a transition
function

• These models were both well-known through the
first standard CS curriculum (ACM, 1968)

Theory of interactive computation David Keil 11/22/02 2

David Keil NES/MAA meeting, 11/22/02 7

Stream I/O
• Mealy machines model finite non-halting

interactive devices: e.g., integrated circuits, control
devices

• A Mealy machine computes a function Σ∞ → Γ∞

where Σ∞ is the set of streams over Σ:
Σ∞ = { ax | a ∈ Σ, x ∈ Σ∞ }

• This is a coinductive definition, associated with
non-well-founded set theory

• Language of a Mealy machine: L(M) ⊆ (Σ × Γ)∞

David Keil NES/MAA meeting, 11/22/02 8

Algorithmic model: Turing machines
• Turing machine:

M = 〈Q, Σ, Γ, δ, q0 ,qaccept, qreject〉
where Σ and Γ are input and tape alphabets (Sipser)

• Transition function δ : Q × Γ → Q × Γ × {L, R}
where L, R denote left or right moves on the tape

• Configuration: 3-tuple consisting of state, tape
contents, head location

• Infinitely many configurations exist

• Tape is erased between computations

• TMs compute the set of recursively definable
functions on natural numbers or, alternatively, strings

David Keil NES/MAA meeting, 11/22/02 9

Interactive model:
Persistent Turing Machines

• A Persistent Turing Machine is a 3-tape TM with a
worktape that is preserved between interactions

• Inputs and outputs are dynamically generated streams

• A minimal extension of TMs expressing interactive
behavior

• One macrostep of a PTM is a TM computation
consisting of microsteps

• PTM’s persistent work tape is called its memory

David Keil NES/MAA meeting, 11/22/02 10

PTM example: answering machine
• An answering machine A is a PTM whose

worktape contains a sequence of recorded
messages and whose operations are record
message, playback, and erase.

• Its TM-computable function fA is:
fA (record Y, X) = (ok, XY)
fA (playback, X) = (X, X)
fA (erase, X) = (done, ε)

• For input stream (record m1, erase, record m2 m3),
A generates (ok, done, ok, ok, m2 m3)

(Goldin, 1999)

David Keil NES/MAA meeting, 11/22/02 11

Stream language and equivalence
• Interactive stream language (ISL) of a PTM M:

the set of interaction streams (i1, o1), (i2, o3), … in,
on ∈ Σ*, in which for every k, there are memories w,
w' such that fM(w, ik) = (ok , w')

• Two PTMs are stream equivalent (observationally
equivalent) iff ISL(M1) = ISL(M2)

• Two memories of M, w1 and w2 are equivalent iff
sub-PTMs with w1 and w2 as starting memories have
the same ISL

• Other equivalences:
- bisimilarity
- isomorphism

David Keil NES/MAA meeting, 11/22/02 12

Notions of minimality
1. A finite-state machine is minimal if it has the

fewest number of states over all equivalent
machines

2. A machine is minimal if it has no two distinct
equivalent states

• Example: states q1, q2

are indistinguishable
in this non-minimal
DFA, where
L(M) = (0|1)1*0(0|1)*.

Theory of interactive computation David Keil 11/22/02 3

David Keil NES/MAA meeting, 11/22/02 13

Equivalence and minimality for PTMs
• Three increasingly refined forms of equivalence:

stream, bisimulation, isomorphism

• For stream-based computing, two states are stream-
equivalent iff the same I/O streams may be observed
from both states

• For equivalence relation R, define R-minimal ITS as
one with no two R-equivalent states

David Keil NES/MAA meeting, 11/22/02 14

Isomorphism of minimal
equivalent interaction machines
• Given equivalence relation R, construct the

R-minimal PTM for a given PTM, using state
equivalence classes as the reduced version’s
state set

• Homomorphism exists from any deterministic
PTM A to any minimal equivalent PTM A0

• Result: any two stream-minimal stream-equivalent
PTMs are isomorphic

David Keil NES/MAA meeting, 11/22/02 15

Conclusion
• What is computation?

• What is a computational problem?

• Problem: algorithms → tasks

• Computation: close box → open system
working concurrently with environment
(Peter Wegner, CACM, 5/97)

• Here we have discussed sequential computation

• Future work: Multiagent computation

David Keil NES/MAA meeting, 11/22/02 16

OVERFLOW

David Keil NES/MAA meeting, 11/22/02 17

Driving is nonalgorithmic
• The problem of driving a car is interactive, not

reducible to an algorithm

• Given input of a map, algorithmic approach would
compute a series of outputs to steering wheel, gas,
brake, etc.

• No one could drive anywhere this way

• External conditions can affect car’s motion during
driving

David Keil NES/MAA meeting, 11/22/02 18

Inductively defined sets
• (i) 0 is a natural number (initiality);

(ii) Every natural number n has a unique
successor, n′ (iteration)

(iii) i and ii are the only ways to obtain a
natural number (minimality)

• Example: Expressions using numerals, +, and ():
expression :

numeral
numeral + expression
(expression)

• Inductive definitions may conditionally use selves

Theory of interactive computation David Keil 11/22/02 4

David Keil NES/MAA meeting, 11/22/02 19

Streams are defined coinductively
• Whereas induction is characterized by use of least

fixed point semantics, coinductive definitions use
greatest fixed point

• Iteration condition:
Σ∞ ={ ax | a ∈ Σ, x ∈ Σ∞ }

• Maximality condition (GFP)

• No base case

• Induction models process of construction of finite
objects

• Coinduction models open processes yielding infinite
objects, e.g., interaction

David Keil NES/MAA meeting, 11/22/02 20

Stream sets are non well founded
• Foundation Axiom excludes notion of sets belonging

to themselves

• A non-well-founded set may contain itself, directly or
indirectly (Anti-Foundation Axiom)

• Example: A = { B, C }; B = { A, D }

• Every stream of characters is a character, followed by
a stream of characters

• Streams contain streams, which contain streams,
which contain streams, ...

• Early work: Paul Finsler, 1920s; see also P. Aczel,
1988; J. Barwise, L. Moss, 1996

David Keil NES/MAA meeting, 11/22/02 21

• Needed: a model of interaction for TM-
powerful devices, analogous to the transducer
model for DFA-powerful devices

• Note: Far from using the transducer model for
inspiration, current theory tends to drop all
mention of it

Can theory make the shift?

David Keil NES/MAA meeting, 11/22/02 22

Interactive transition systems
• An interactive transition system (ITS) is a quadruple

〈S, Σ, m, r〉 where S ⊆ Σ* is the set of states; Σ is a
finite alphabet; m ∈ S × Σ* × S × Σ* is the transition
relation; r ∈ S is the initial state (root)

• m is required to be recursive (computable), i.e., its
interpretation as the function m : S × Σ* → 2S × Σ * is
computable

• ITS model is equivalent in expressiveness to PTM
model, i.e., infinite-state transducers

• Stream languages of PTMs, ITSs with persistent
memory are a strict superset of those that discard
worktape between steps

David Keil NES/MAA meeting, 11/22/02 23

Reduced form and
indistinguishability

• Let M be a deterministic finite automaton
• Then its reduced form is a DFA constructed by

merging indistinguishable states of M.
• States q1 and q2 are indistinguishable if on any input x

to the two sub-DFAs that start with these states, x is
accepted by both or rejected by both.

David Keil NES/MAA meeting, 11/22/02 24

Homomorphism from any ITS to
minimal equivalent ITS

• Proposition: If A0 ≡ A1 and both are minimal, then an
isomorphism exists between them

• Proof sketch: Sets of equivalent states of A1 show
same behavior, define equivalence classes that are the
state set of A0. Mapping of states of A1 to equivalent
states of A0 is homomorphic. If both machines are
minimal, reverse mapping is possible, hence
isomorphism exists.

