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Algorithmic computation
• Algorithm: an old mathematical concept (Al Kuwarizmi, 

Baghdad, ca. 800 A.D.)

• Turing machines: identified with the notion of 
algorithms (Turing, 1936)

• Features of algorithmic computation: finite input, 
followed by finite computation, followed by finite 

output

• “The classical TM paradigm may no longer be fully 
appropriate to capture all the features of present-day 
computing” (Van Leeuwen-Wiedermann, 2000) 

question answer
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Interactive computation
• Feature of computing today: Computation as an ongoing 

service, not assumed to terminate

• Must solve problems whose inputs
cannot be completely specified a priori

• Dynamic input and output during computation

• Persistence of state between interaction steps

• Environment is an active partner in computation
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Overview
• Algorithmic computation and the paradigm shift to 

interaction

• Models of algorithmic computation
- Deterministic finite automata
- Turing machines

• Models of interaction
- Finite transducers
- Persistent Turing Machines, 

Interactive Transition Systems

• Streams and coinduction

• State equivalence and minimality

input0
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input1 input2

output0 output1 output2
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The paradigm shift to interaction

What about theory of computation?

Open systemsClosed systems

Emergent behaviorCompositional behavior

Adaptation, controlRule-based reasoning

Agent-oriented AILogic and search in AI

Object-oriented designStructured design

Providing a service over 

time (by agents)

Transforming input 

to output (by TMs)

InteractiveAlgorithmic
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Finite automata, finite transducers
• Deterministic finite automaton: 〈Q, Σ, δ, q0,F〉 where 

Q is a finite set of states, Σ an input alphabet, δ : Q ×
Σ → Q a transition function, q0 a start state, F a set 
of accepting states

• DFAs are recognizers of sets of finite sequences

• Mealy machine: 〈Q, Σ, Γ, δ, q0〉 where Γ is a finite 
output alphabet, δ : Q × Σ → Q × Γ is a transition 
function

• These models were both well-known through the 
first standard CS curriculum (ACM, 1968)
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Stream I/O
• Mealy machines model finite non-halting 

interactive devices: e.g., integrated circuits, control 
devices

• A Mealy machine computes a function Σ∞ → Γ∞

where Σ∞ is the set of streams over Σ:
Σ∞ = { ax | a ∈ Σ, x ∈ Σ∞ }

• This is a coinductive definition, associated with 
non-well-founded set theory

• Language of a Mealy machine: L(M) ⊆ (Σ × Γ)∞
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Algorithmic model: Turing machines
• Turing machine:

M = 〈Q, Σ, Γ, δ, q0 ,qaccept, qreject〉
where Σ and Γ are input and tape alphabets (Sipser)

• Transition function δ : Q × Γ → Q × Γ × {L, R} 
where L, R denote left or right moves on the tape

• Configuration: 3-tuple consisting of state, tape 
contents, head location

• Infinitely many configurations exist

• Tape is erased between computations

• TMs compute the set of recursively definable 
functions on natural numbers or, alternatively, strings
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Interactive model: 
Persistent Turing Machines

• A Persistent Turing Machine is a 3-tape TM with a 
worktape that is preserved between interactions

• Inputs and outputs are dynamically generated streams

• A minimal extension of TMs expressing interactive 
behavior

• One macrostep of a PTM is a TM computation 
consisting of microsteps

• PTM’s persistent work tape is called its memory
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PTM example: answering machine
• An answering machine A is a PTM whose 

worktape contains a sequence of recorded 
messages and whose operations are record 
message, playback, and erase.

• Its TM-computable function fA is:
fA (record Y, X) = (ok, XY)
fA (playback, X) = (X, X)
fA (erase, X) = (done, ε)

• For input stream (record m1, erase, record m2 m3), 
A generates (ok, done, ok, ok, m2 m3)

(Goldin, 1999)
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Stream language and equivalence
• Interactive stream language (ISL) of a PTM M: 

the set of interaction streams ( i1, o1), ( i2, o3), … in, 
on ∈ Σ*, in which for every k, there are memories w, 
w' such that fM(w, ik) = (ok , w')

• Two PTMs are stream equivalent (observationally 
equivalent) iff ISL(M1) = ISL(M2)

• Two memories of M, w1 and w2 are equivalent iff 
sub-PTMs with w1 and w2 as starting memories have 
the same ISL

• Other equivalences:
- bisimilarity
- isomorphism
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Notions of minimality
1. A finite-state machine is minimal if it has the 

fewest number of states over all equivalent 
machines

2. A machine is minimal if it has no two distinct 
equivalent states

• Example: states q1, q2

are indistinguishable 
in this non-minimal 
DFA, where 
L(M) = (0|1)1*0(0|1)*.



Theory of interactive computation David Keil 11/22/02 3

David Keil NES/MAA meeting, 11/22/02 13

Equivalence and minimality for PTMs
• Three increasingly refined forms of equivalence: 

stream, bisimulation, isomorphism

• For stream-based computing, two states are stream-
equivalent iff the same I/O streams may be observed 
from both states

• For equivalence relation R, define R-minimal ITS as 
one with no two R-equivalent states
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Isomorphism of minimal 
equivalent interaction machines
• Given equivalence relation R, construct the 

R-minimal PTM for a given PTM, using state 
equivalence classes as the reduced version’s 
state set

• Homomorphism exists from any deterministic 
PTM A to any minimal equivalent PTM A0

• Result: any two stream-minimal stream-equivalent
PTMs are isomorphic
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Conclusion
• What is computation?

• What is a computational problem?

• Problem: algorithms → tasks

• Computation: close box → open system 
working concurrently with environment 
(Peter Wegner, CACM, 5/97)

• Here we have discussed sequential computation

• Future work: Multiagent computation
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OVERFLOW
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Driving is nonalgorithmic
• The problem of driving a car is interactive, not 

reducible to an algorithm

• Given input of a map, algorithmic approach would 
compute a series of outputs to steering wheel, gas, 
brake, etc.

• No one could drive anywhere this way

• External conditions can affect  car’s motion during 
driving
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Inductively defined sets
• (i) 0 is a natural number ( initiality ); 

(ii) Every natural number n has a unique
successor, n′ (iteration) 

(iii) i and ii are the only ways to obtain a 
natural number (minimality )

• Example: Expressions using numerals, +, and ( ):
expression :

numeral
numeral + expression
( expression )

• Inductive definitions may conditionally use selves
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Streams are defined coinductively
• Whereas induction is characterized by use of least 

fixed point semantics, coinductive definitions use 
greatest fixed point 

• Iteration condition:
Σ∞ ={ ax | a ∈ Σ, x ∈ Σ∞ }

• Maximality condition (GFP)

• No base case

• Induction models process of construction of finite 
objects

• Coinduction models open processes yielding infinite 
objects, e.g., interaction
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Stream sets are non well founded
• Foundation Axiom excludes notion of sets belonging 

to themselves

• A non-well-founded set may contain itself, directly or 
indirectly (Anti-Foundation Axiom)

• Example: A = { B, C }; B =  { A, D } 

• Every stream of characters is a character, followed by 
a stream of characters

• Streams contain streams, which contain streams, 
which contain streams, ... 

• Early work: Paul Finsler, 1920s; see also P. Aczel, 
1988; J. Barwise, L. Moss, 1996
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• Needed: a model of interaction for TM-
powerful devices, analogous to the transducer 
model for DFA-powerful devices

• Note: Far from using the transducer model for 
inspiration, current theory tends to drop all 
mention of it

Can theory make the shift?
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Interactive transition systems
• An interactive transition system (ITS) is a quadruple 

〈S, Σ, m, r〉 where S ⊆ Σ* is the set of states; Σ is a 
finite alphabet; m ∈ S × Σ* × S × Σ* is the transition 
relation; r ∈ S is the initial state (root)

• m is required to be recursive (computable), i.e., its 
interpretation as the function m : S × Σ* → 2S × Σ * is 
computable

• ITS model is equivalent in expressiveness to PTM 
model, i.e., infinite-state transducers

• Stream languages of PTMs, ITSs with persistent 
memory are a strict superset of those that discard
worktape between steps
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Reduced form and
indistinguishability

• Let M be a deterministic finite automaton
• Then its reduced form is a DFA constructed by 

merging indistinguishable states of M.
• States q1 and q2 are indistinguishable if on any input x

to the two sub-DFAs that start with these states, x is 
accepted by both or rejected by both.
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Homomorphism from any ITS to 
minimal equivalent ITS

• Proposition: If A0 ≡ A1 and both are minimal, then an 
isomorphism exists between them

• Proof sketch: Sets of equivalent states of A1 show 
same behavior, define equivalence classes that are the 
state set of A0. Mapping of states of A1 to equivalent 
states of A0 is homomorphic. If both machines are 
minimal, reverse mapping is possible, hence 
isomorphism exists.


