
2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 1

David M. Keil, Framingham State University

CSCI 252 Computer Science I Using Java

2. Arrays and
loop design

1. Defining and populating arrays

2. Array operations and boundary errors

3. Searching arrays

4. Nested loops and sorting algorithms

David Keil Computer Science II 2. Arrays 7/15 2

Inquiry

• Is there a way to work conveniently

with multiple items of the same type

in memory?

• How do we store a collection

of numbers?

• A collection of objects?

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 3

Topic objective

Define and safely

manipulate arrays,

designing nested loops

and applying search

and sorting algorithms

David Keil Computer Science II 2. Arrays 7/15 4

• How can a program define a collection

of integers that can be traversed with

a loop?

• How is memory allocated for such data?

• How can a file be retrieved

into memory?

1. Defining and

populating arrays

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 5

Subtopic objective

2.1b Describe Java arrays**

David Keil Computer Science II 2. Arrays 7/15 6

Java strings are sequences

• String class declares objects that are sequences

of char indexed by a subscript

• Methods of String class:

length(), substring(), charAt(), length(),

equals(t), compareTo(t), startsWith(t),

startsWith(t, i), endsWith(t), contains(c, s),

indexOf(t), trim(), indexOf(c, i), replace(c1, c2)

• Each String method operates on the sequence

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 7

Using arrays
• Array: An indexed sequence of storage

locations for data items all of the same type

• Arrays are compound data items

• Elements are accessed by subscript (index),

ranging from 0 to (# elements – 1):

 score[0] = 75;
 out.print(score[0]);

• Address of an element of an array is calcu-
lated using its offset from the first element

David Keil Computer Science II 2. Arrays 7/15 8

Declaring arrays
• Arrays are declared in Java using brackets, the

new operator, and the number of elements:
 int[] score = new int[7];

• Arrays are objects with the special constant
public data member length:

 score.length above is 7

• Array may have occupancy smaller than length

 [0] [1] [2] [3] [4] [5] [6]

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 9

Arrays in memory

• Array delcaration creates a reference to

an array
 int A[4];

• Length of this array is 4:

• Length of array (capacity) does not tell

how many elements have meaning

David Keil Computer Science II 2. Arrays 7/15 10

Array initialization
int[] days_in_month =

{

 31,28,31,30,31,30,

 31,31,30,31,30,31

 };

out.print("February has “ +

days_in_month[1] + " days“);

Array of integers

• When array is initialized in this way, memory

allocation by use of new is implicit and number

of elements in array is number of initial values

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 11

Using an array
final int MAX=3;

int[] income = new int[MAX];

int sum=0;

income[0] = 258;

income[1] = 192;

income[2] = 467;

for (int i=0; i < MAX; ++i)

{

 out.print(income[i]);

 sum += income[i];

}

out.print("Total: “ + sum);

David Keil Computer Science II 2. Arrays 7/15 12

Reading a file into an array
final int MAX_SZ = 50;

String f_name = "Readfile.txt";

int[] A = new int[MAX_SZ];

System.out.println("Reading "+f_name);

FileReader reader=new FileReader(f_name);

Scanner fin = new Scanner(reader);

int i = 0;

while (fin.hasNextInt() && i < MAX_SZ)

 A[i++] = fin.nextInt(); // Read

fin.close();

for (int j=0; j < i; j++)

 System.out.print(A[j] + " "); //Display

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 13

Random-number generation

• Uses: simulation, testing

• An instance of Random is a stream, like

a Scanner

• To assign random numbers in {1 .. 10} to

an array:

Random r = new Random();

for (int i = 0; i < 10; i++)

 A[i] = r.nextInt(10)+1;

David Keil Computer Science II 2. Arrays 7/15 14

Coin flips

• Chance makes games more interesting

• Example, simulating roll of die:

 Random gen = new Random();
 boolean is_heads = (gen.nextInt(2) > 1)

• nextInt(n) returns a random integer in (0..n]

• nextDouble(1) returns a double in (0..1]

• Note: the Random class generates pseudo-

random numbers, not literally random ones

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 15

Arrays of Booleans

• An array of truth values can contain

yes/no information about elements of

another sequence

• Example: to represent a set of numbers in the

range of {1..8}, use an array of eight

Booleans, each of which tells whether its

subscript is in the set

• Example: The sequence (F, F, F, T, T, F, F, F)

represents the set {4, 5}

David Keil Computer Science II 2. Arrays 7/15 16

Java array types
• Array type names are primitive-type or

class names, followed by brackets:

 int[] A;
 String[] roster;

• To allocate memory for an array, new

must normally be used:

 int[] A = new int[10];
 String[] roster =

 new String[100];

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 17

• What are pitfalls with arrays?

• How are they overcome?

2. Array operations

and boundary errors

David Keil Computer Science II 2. Arrays 7/15 18

Subtopic objectives

2.2a Traverse an array**

2.2b Argue for the correctness of

a loop design

2.2c Write a simulation using a

random number generator†

2.2d Define a 2D array†

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 19

Array applications

Looping operations on arrays:

• Search or search and replace

• Sort in ascending order

• Calculate statistics such as sum,

average, maximum, minimum,

median, variance, mode

David Keil Computer Science II 2. Arrays 7/15 20

Longest ascending

consecutive sequence (A)
max  0

for i  1 to |A|  1

 j  i

 while A[j]  A[j + 1]  j < i

 j  j + 1

 if j > max

 max  j

return max

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 21

Example: Calculating variance
int[] score = {90,75,84,94,89,97,81},

 i,j,total,avg,

 num_scores = sizeof score / sizeof(int);

// Find average:

for (i=0,total=0; i < num_scores; ++i)

 total += score[i];

avg = total / num_scores;

// Display variances from average:

out.printf("Average = %d\n",avg);

out.printf("Score Variance\n");

for (j=0; j < num_scores; ++j)

 out.printf("%4d%12d\n",

score[j],score[j] - avg);

Output:
Average = 87

Score Variance

 90 3

 75 -12

 84 -3

 94 7

 89 2

 97 10

 81 -6

Variance is the difference between

one item’s value and average value

David Keil Computer Science II 2. Arrays 7/15 22

Observing array boundaries

• int[] n = new int[5];

allocates five ints

• Semantically valid subscripts here: 0 to 4

• A boundary violation throws an exception

• “n[5]” is valid syntax, but refers to memory

that is outside the bounds of the declared array

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 23

Boundary errors
• It’s recommended to write code that checks

for valid subscripts, 0 .. (|A|  1)
• Example: for declaration

 int[] A = new int[5];

accesses to A[-1] or A[5] are errors

• Both assignments are bounds errors; the Java
run-time environment will throw exceptions

• Any access to an uninitialized array is an
error: int[]A; A[0] = 1; // error

David Keil Computer Science II 2. Arrays 7/15 24

Arrays are objects

• An array variable is a reference to an

array object

• Predefined methods for all arrays:

equals(), clone()

• Constructor initializes all elements to zero

or null value

• A method that has an array as a parameter

may change values of elements

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 25

Assignment copies references

• Assigning an array reference as the value

of an array object results in two

references to the same object:
 int[] A = new int[5];

 int[] B = A;

David Keil Computer Science II 2. Arrays 7/15 26

Copying arrays correctly

• Deep copying makes a separate copy:
 int[] B = A.clone();

 int[] B = A.copyOf(A,n);

•System.arraycopy(A,si,B,di,3)

copies three elements of A, starting at

subscript si, to B, starting at di

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 27

Loops and associative operators

• Operations with associative operators may

be evaluated for arrays using loops or

induction (recursion)

• Examples: +, , , , , 

• Other operations on arrays may be computed

using loops:

• Inversion ()

• Is-ascending

• All-identical

• Count

• Search

• Search-replace

David Keil Computer Science II 2. Arrays 7/15 28

Loop invariant:
An assertion, about the state of an
algorithmic process, that is true at the
start of each iteration of a loop, and
that helps to establish the validity of
a postcondition

Rationale: If we can show that an

assertion is true at the top of the loop and

true throughout its execution, then we can

show that the assertion is true after the

loop terminates

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 29

Traversing an array
• A loop invariant helps see that the array-

summing algorithm is correct:

 sum  0

for i  1 to |A|

 LI: sum = 𝐴[𝑘]𝑖−1
𝑘=1

 sum  sum + A[i]

• 𝐴[𝑘]𝑖−1
𝑘=1 holds at the start of this loop’s

body on every iteration, so it will also be

valid after the loop terminates, when i = |A|.

A[1] + A[2] + … + A[i - 1]

David Keil Computer Science II 2. Arrays 7/15 30

Recurrences for arrays
• Function definition for adding a sequence:

 Sum(A) =

 0 if |A| = 0

 A[1] if |A| = 1

 A[1] + Sum(A[2 .. |A|]) otherwise

• Algorithm suggested by this definition:

 sum  0

 for i  1 to |A|

 sum  sum + A[i]

• Similar recurrences exist for other functions

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 31

C-style strings are arrays of char

• The C string library and I/O functions treat

the ASCII value 0 (‘\0’) as a sentinel that
terminates a string
char name[6] = “Bill”;

• Assigning ‘\0’ to a character element of a
string may shorten the string
name[3] = ’\0’;

out.printf(”%s”,name);

David Keil Computer Science II 2. Arrays 7/15 32

Enhanced for loop

• Traverses an array without a counter

• Example:
int[] A = {3, 8, 1, 5, 6}

int y = 0;

for (n: A)

 y += n;

• n takes the value of the next element of

array A as the loop proceeds

• Limitation: Does not enable assigning

values to array elements

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 33

• Java can represent a matrix as an array of

arrays; each element has two subscripts

Two-dimensional arrays

Rows Columns

double[][] daily_average =

new double [CLOSE+1][MAX_DAYS];

David Keil Computer Science II 2. Arrays 7/15 34

Rows and columns in 2D array

• First subscript represents row

• Second subscript represents column

• This is called row-major ordering

A[2][0]
A[0][2]

A[1][3]

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 35

Initializing a 2D array
const int NUM_DAYS = 5;

public static void main()

{

 double price[CLOSE+1][NUM_DAYS] =

 {

 {76.2,81.3,78.5,79.2,80.7},

 {70.9,75.4,71.3,71.8,74.1},

 {74.0,73.6,78.2,76.6,79.5}

 };

…

David Keil Computer Science II 2. Arrays 7/15 36

Example: Tic-tac-toe board
char board[3][3] = {‘-‘};

board[0][0] = ‘X’;

board[1][1] = ‘X’;

board[2][2] = ‘X’;

for(int row = 0; row < 3; ++row)

{

 for(int col = 0; col < 3; ++col)

 out.print(board[row][col]);

}
X - -

- X -

- - X

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 37

Array traversal problems
Accept an array of integers as a parameter, and an

integer x, and return

1. the array with x inserted at the beginning

2. index of the first occurrence of x; 1 if x not

found

3. number of occurrences of x

4. true iff the sum of the first half of the array is

greater than the sum of the second half.

5. original array, with an integer, x, inserted at the

beginning of the array

David Keil Computer Science II 2. Arrays 7/15 38

Limits of testing
This program can hang. What is the bug and how

many tests would be expected to find it?
void main()

{

 int x1 = in.nextInt(),

 x2 = in.nextInt();

 srand(&time);

 if (x1 == rand() && x2 == rand())

 while(1);

 out.println(“x1 + x2 = “ + (x1 + x2));

}

Standard

random-

number

functions

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 39

Conditions for software correctness

• Program eventually halts

under all conditions

• Thus, values that control termination of

a loop must converge

• For all possible inputs or parameter

values, a program or function must have

a correct result

• By reasoning about the code, we can

judge correctness and find bugs

David Keil Computer Science II 2. Arrays 7/15 40

Assertions and correctness

• A comment that is an assertion tells

not what occurs, but something about

values of variables and expressions

• Valid assertions can help us establish

that our code does what we claim

• Chief tools: preconditions,

postconditions, loop invariants

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 41

• Precondition: An assertion about what the

state of inputs is before an algorithm

executes

• Postcondition: An assertion that is claimed to

hold after execution if the precondition holds

• Example: Adding a series of numbers

- Precondition: total is 0

- Postcondition: total stores the sum

 of all input values

Pre- and post- conditions

David Keil Computer Science II 2. Arrays 7/15 42

Invariants help verify correctness

• Invariant: sum stores

• Postcondition of this pseudocode:

sum stores

sum 0

For i 1 to 5

 Input termi
 sum sum + termi

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 43

Loop-invariant example
void main()

{

 double input=0,largest = in.nextInt();

 out.println("Enter a number (< 0 to exit): “);

 // Precondition: <largest> stores input

 while (input >= 0)

 {

 // Loop invariant: <largest> stores

 // maximum input so far

 cout << "Enter a number (< 0 to exit): “);

 input = in.nextInt();

 if (input > largest)

 largest = input;

 };

 // Postcondition: ‘largest’ is the

 // maximum value entered

}

David Keil Computer Science II 2. Arrays 7/15 44

What are the invariants?
int input, total = 0;

input = in.nextInt();

while (input > 0)

{

 input = in.nextInt();

 total += input;

}

int i = 0, count = 0;

String s = in.nextLine();

while (i < s.length())

 if (s.charAt(i++) = = ‘ ‘)

 count++;

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 45

Formal verification
• Preconditions: Comments that state assumptions

of a method: e.g., a precondition of a method that

computes sqrt(x) is x  0

• Postconditions: Specification of code, or what the

user can expect; e.g., a postcondition of sqrt(x) is

that return value squared approximates x

• Loop invariants: Assertions that hold at the

beginning of a loop body throughout execution of

the loop

David Keil Computer Science II 2. Arrays 7/15 46

3. Searching arrays

How would we find

• the tallest person in this class?

• everyone whose SS#s start with ‘2’?

• the person closest to six feet tall?

• a phone number in a phone book?

• whether a deck of cards is complete,

without duplicates?

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 47

Subtopic objectives

2.3a Explain a search algorithm

2.3b Search an array or

merge arrays*†

David Keil Computer Science II 2. Arrays 7/15 48

Searching for the first ‘1’
final int ARR_SZ = 6;

int match = -1;

char A[ARR_SZ] =

{‘0’,’0’,’1’,’0’,’1’,’1’};

for (int i = 0; i < ARR_SZ; ++i)

 if(A{i] == ‘1’) {

 match = i;

 break;

 }

if match >= 0

 out.print(“Found at A[“ + match + “]”);

else out.print(“Not found”);

• How does time rise as ARR_SZ rises?

Output:

Found at A[2]

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 49

Search algorithms
• Linear

- inspects each element of array
- slow

- works on any array
- simple to code

• Binary
- Similar to alphabetic-list lookup

- fast
- works only on ordered arrays

- more complex to code

David Keil Computer Science II 2. Arrays 7/15 50

Linear-search (A, key)
i  1
while i  size of A
 i  i + 1
 if A[i] matches key
 return true
return false

• Finds element with value key in array A

• Takes up to one pass through A

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 51

Verifying an array is sorted
• Fact: The best search algorithm

requires array be in ascending order

• Problem: Determine whether the

elements of array A are in ascending

order

• How many steps for this array?

• How many for any 8-element array?

• How many for any n-element array?

David Keil Computer Science II 2. Arrays 7/15 52

Inserting into a sorted array
int insert(float A[], double new_item)

// Preconditions: A not full; A is ascending

// Postconditions: <A> contains <new_item>,

// <A> is still ascending.

{

 int i = size;

 while (new_item < A[i-1] && i > 0)

 {

 A[i] = A[i-1];

 i = i – 1;

 }

 A[i] = new_item;

 return ++size;

}

Move elements greater

than new_item to the right

Drop new_item in place

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 53

Merging two sorted arrays

Repeat until A and B are exhausted:

 Append the lesser of {Aai, Bbi} to C,

incrementing the indexes ai, bi, and

ci as appropriate

• C should be as large as A, B, together

David Keil Computer Science II 2. Arrays 7/15 54

Binary phone-book search

• Each step eliminates half the unsearched

data, cuts remaining work in half

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 55

Binary search algorithm
Compares middle array element to search key;

repeats as necessary for left or right half

Binary-search(A, key)
first 1
last Size(A)
While first  last
 middle  (first + last)  2
 if A[middle] = key return true
 otherwise
 if A[middle] > key last  middle - 1

 otherwise first  middle + 1
Return false

David Keil Computer Science II 2. Arrays 7/15 56

A driver to test a
binary-search method

public static void main()

{

 int A[] = { 3,4,6,7,9,10,12,14,17,18,20};

 System.out.print("Enter search key: “);

 int key = in.nextInt();

 if (binary_srch(A,key))

 System.out.println("Found“);

 else

 System.out.println("Not found“);

}

Sample I/O:
Enter search key: 2 Found

Enter search key: 8 Not found

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 57

Code for iterative binary search
bool binary_search(int A[],int key,int size)

{

 int first = 0, last = size-1, middle;

 bool found = false;

 // Preconditions: <size> is size of A;A is sorted

 while (first <= last && ! found)

 {

 // Loop invariant:

 // key is in range A[first..last] or not in A

 middle = (first + last) / 2;

 if (A[middle] == key) found = true;

 else

 if (key < A[middle]) last = middle - 1;

 else first = middle + 1;

 }

 return found;

 // Postcondition: <found> tells whether <key> in A

} [binsrch.cpp]

David Keil Computer Science II 2. Arrays 7/15 58

Search algorithm running times

Array Linear Binary

size search search

10 10 3

100 100 6

1000 1000 10

1M 1M ~20

1G 1G ~30

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 59

4. Nested loops and
sorting algorithms

• Did you study nested loops in CS II?

• Have you sorted data in a text editor or

spreadsheet?

• What is the postcondition of any

sorting algorithm?

• What is true for every pair of consecutive

elements A[i], A[i + 1], in a sorted array?

David Keil Computer Science II 2. Arrays 7/15 60

Subtopic objectives

2.4a Give the output of a

nested loop**

2.4b Write a nested loop**

2.4c Explain a sorting algorithm

2.4d Sort an array*†

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 61

Problems that require

nested loops
• Finding duplicates: Must compare each

element with each other element

• Finding the pair of array elements that are

closest to each other in value

• Finding mode (most frequent value): must

create a new array that stores counts of

each value; or must sort first

• Printing addition, multiplication tables

David Keil Computer Science II 2. Arrays 7/15 62

Finding duplicates
Has-duplicates(A)
y  false

for i  1 to |A|  1

 > Loop inv: y = true iff

 > A[1..|A|] has some duplicates

 for j  1 to |A|  1

 if A[i] = A[j]

 y  true

return y

Post y = true iff A has some duplicates

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 63

Sorting
• Sort: an algorithm that arranges array

elements in ascending order

• Sorting is a precondition for the

binary search and the merge algorithm

• Simple sorts: bubble, selection,

insertion

• Postcondition for sort: every element

is at least as large as the one to its left

David Keil Computer Science II 2. Arrays 7/15 64

Bubble sort intuition

• The exit condition helps prove that bubble

sort works

• The use of nested loops suggests it may take

(n2) comparisons to sort an n-element array

Repeat

 for each element

 if it is greater than its successor

 swap them

until none are found out of order

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 65

Bubble sort
> Precondition: A is an array
Repeat
 swapped  false
 for i  1 to Size(A) - 1

 if A[i] > A[i +1]
 swap A[i] with A[i +1]
 swapped  true
until swapped = false
> Postcondition: A is ascending

David Keil Computer Science II 2. Arrays 7/15 66

Bubble-sort(A)
//Precondition: A is an array
np  0 // number of passes
Repeat
 //Invariant: Rightmost (np) elements are sorted;
 //if swapped is false and np > 0, then A is sorted
 swapped  false
 for i  1 to size(A) - 1
 //Invariant: (x  A[0..i -1]) A[i]  x
 if A[i] > A[i + 1]
 swap(A[i], A[i + 1])
 swapped  true
 np  np + 1
until swapped is false
//Postcondition: A is sorted ascending

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 67

Swapping array elements

• Let method swap(A, i, j) return

parameter array, A, modified so that

A[i] and A[j] have exchanged

positions

• int t = A[i];

A[i] = A[j];

A[j] = t;

Why is the first line needed?

David Keil Computer Science II 2. Arrays 7/15 68

How selection sort works
Repeatedly

• Select the smallest value in the array

• Move it to the right end of a growing

sub-sequence to the left of the array

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 69

Selection Sort(A, start, size)
If size > 1

 i  min-index(A[start..size])

 Swap (A[start], A[i])

 Return Selection-sort (A, start + 1, size)

else return A

Min-index(A) =

 1 if |A| = 1

 min(A[1], A[min-index(A[2.. |A|)]) otherwise

David Keil Computer Science II 2. Arrays 7/15 70

Selection sort
void main()

{

 int score[] = {3,2,9,7,4,6,5,1,8,0};

 int n = sizeof(score)/sizeof(int);

 selection_sort(score,n);

 for (int i = 0; i < n; ++i)

 cout << score[i] << “ “;
}

void selection_sort(int A[],int size)

{
 for (int i=0; i < size-1; ++i) {

 // Find min { A[i..size-1]}, swap w/ A[i]:

 int smallest = i; // Index of least value

 for (int j = i+1; j < size; ++j)

 if (A[j] < A[smallest])

 smallest = j;

 swap(A[i],A[smallest]);

 }

}

0123456789

Steps:

21634

12634

12634

12364

12346

12346

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 71

How insertion sort works

• Repeatedly move the first element

of the unsorted (right-hand) part of

the array …

• into its sorted position in a growing

subsequence at the left

David Keil Computer Science II 2. Arrays 7/15 72

Insertion-sort(A)
Precondition: A is an array
num_sorted  1
Repeat
 Invariant: A[1...num-sorted] is ascending
 i  num-sorted + 1
 A Array-insert (A, num_sorted, A[i])
 num_sorted  num_sorted + 1
until num_sorted = |A|
Postcondition: A is sorted ascending

2. Arrays David Keil CS II 7/15

David Keil Computer Science II 2. Arrays 7/15 73

What do these sorting

algorithms have in common?

• Hint: What loops occur, and where,

in these algorithms?

• Terminology:

– a loop that iterates from the start

to the end of an array is called

a traversal

– A loop inside a loop is nested

David Keil Computer Science II 2. Arrays 7/15 74

References

A. Downey. Think Java. [Available online.]

Cay Horstmann. Big Java Early Objects.

Wiley, 2014.

D. Keil. Displaying an array. Classroom handout.

Reges and Stepp. Building Java Programs.

