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1. Java compilation and syntax 
2. Standard data types 
3. Loops and debugging 
4. Classes and objects 
5. Precalculus concepts 
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Event-driven programming 

0.1a  Explain the Java virtual machine* 

0.1b  Explain the fetch-execute cycle* 

0.1c Describe Java syntax*  

0.1d Identify the steps in  

system development* 

0.1e Explain code documentation* 

1. Java compilation 
and syntax 
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The Java virtual machine 
• The Java compiler translates Java code to an 

assembler-like language called “byte code” 

• The JVM is a program that interprets byte-

code instructions, simulating a real processor 

• The java program at the command line, and 

any Internet browser, contain JVMs 

• The class loader in java allows program 

statements from different .class files to 

invoke each other 
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Virtual machines 
• Any interactive program or operating system is 

an interpreter of commands that lets computer 

hardware emulate a specialized machine 

• Examples:  

- UNIX command interpreter is  

   platform independent; 

- Java VM in Web browsers executes 

   downloaded platform-independent byte code 

• Issue: Java VM’s security – Does VM permit 

byte code to write to disk, send email, etc.? 
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Gates  

• Used to manipulate binary data 

• 1 or 2 bit input, 1-bit output 

• Specified using truth tables 

• NOT (negation) 

• AND (conjunction) 

• OR (disjunction) 

• Used as components of combinational circuits: 

NAND, NOR, XOR, adders, etc. 
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A simplified model computer 

• RAM (random-access memory) 

contains programs and data 
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The processor 
• Initiates all actions 

• Has two units: 

– Control: Determines  

order of operations 

– Arithmetic logic: 

Executes operations  

on data 

• Communicates with memory 

• Has three registers: program counter, instruction 

register, accumulator 
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Machine-language programs 

• Instructions are represented in binary 

operation codes 

• These may have operands, which specify 

address of data to be operated on 

• All operations are simple 

• Instructions and data re stored in consecutive 

RAM locations 
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The fetch-execute cycle 

PC  0 

Repeat 

 IR  MEM(PC) 

 PC  PC + 1 

 Execute instruction in IR 

until instruction is STOP 

Instruction 

Register (IR) 

gets contents of  

RAM referenced 

by value stored 

in PC 

Program Counter  (PC) 

register gets address 0  
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Programming languages 
• Syntax: 

- rules for forming tokens  

   (e.g., delimiters, operators, IDs, numerals) 

- rules for putting tokens together  

  (e.g., statement, expression, program) 

• Semantics: Meaning; i.e., a mapping from 

structure of program to machine actions 

(machine-code statements) 
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Object-oriented languages 
• Data are objects, defined by attributes and 

behaviors (“methods”) 

• Objects send and receive messages 

• Classes are templates for objects 

• Features: 
- encapsulation (data hiding); 
- inheritance (derived classes inherit  
  attributes and methods from base classes); 
- polymorphism (meaning of a message 
depends on class of recipient) 

• Examples: Smalltalk, Simula, C++, Java  
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Higher-level languages  

• Support I/O, control structures,  

and modularity 

• Shield programmer from hardware and 

operating-system details 

• Are portable (compilable to any  
runtime environment) 

• Are translated to machine language or byte 

code by compilers or interpreters 

• Examples: COBOL, Fortran, Pascal, C,  

C++, Java 
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Interpreting vs. compiling 
• Interpreted code is executed one instruction 

at a time from input stream (machine code, 

Java byte code, command line) 

• Compilers translate code from high-level 

languages like Java to low-level form that 

can be interpreted 
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Integrated development  
environments 

• Editor enables code entry and modification, with 

syntax highlighting 

• Compiler translates Java to machine code or byte 

code; provides warnings; error diagnostics 

• Debugger enables trace of variables 

• Help systems provide reference 

• Examples: NetBeans, BlueJ, Eclipse 

• Java Development Kit (Sun) provides 

 compiler, debugger 
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Projects 
• Most IDEs organize Java programs as 

projects consisting of multiple  
source-code files 

• Examples: BlueJ, Eclipse, NetBeans 

• Often developers create one source file per 

Java class, compile source files separately, 
link compiled .class files 

• If .jar file is produced, then it is executable 
alone if the Java runtime environment is on 

the computer 
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Projects and object files (C, C++) 
• Project: a set of source files ready to link 

together after compilation 

• Programmer selects files to include based 

on class and function dependencies 

• Compilation produces intermediate linkable 
object files (.obj or .o), which may or may 

not define main; some function addresses 

may not be resolved 

• Build command automatically compiles any 

source files modified since last compile 
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The system development process 

Phases (may repeat): 

• Analysis: specifies input  

and output 

• Program design: prepares 

algorithms, data structures 

• Coding: implements design as a 

program in a language 

• Testing: evaluates working program 

• Maintenance: addresses errors and 

needs not found in previous stages  
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Standards for system specification 

• Specification (requirements document) gives: 

– input 

– output 

– correspondence between the two 

• User interface should be specified 

• If input is via file or port, specify this 

• Any repeated steps should be stated 
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Design concerns 
• Simplicity (via abstraction, structure) 

• Performance (throughput, response time) 

• Reliability (redundancy, recovery, integrity) 

• Evolvability (adaptation to changes in function 
and scale) 

• Security (access control privacy, authentication) 

• Design principles: abstraction, information 
hiding, modularity, packages, version control, 
divide and conquer, layering, hierarchy, reuse, 
interfaces, encapsulation, virtual machines 
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Modular decomposition 
• One strategy: divide and conquer 

• All programming languages support modularity 

• An organization is modular 

• Modular design may be top-down 

• Subprograms implement modular designs 
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Documentation guidelines 

• State purpose of every program and every 

component of large programs at top 

• Give meaningful names to variables 

• Use well-named constants 

• Use comments to clarify intention 

• Format source code for clarity 

• To be debugged or maintained, a program 

must be understandable 
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Formatting source code 
• Example: 
void main()! 

{ 

 System.out.println(”Hello”); 

} 

• Leave an empty line before a method 

definition such as main 

• Align pairs of braces vertically 

• Indent statements 2-3 spaces 

• Readability is a major concern 
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Documenting exercises 

• In this course, all programs are to be 

documented by comments 

• Purpose of program is to be at top 

• Each block of code is to have a comment 

stating its purpose 

• Comments include your name, the date, and 

reference to course objective 
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Specifying grammar rules 

• A language is a set of strings, e.g., the set 

of all possible C++ programs 

• A grammar is a set of rules for what is 

permitted in a language 

• Java  tokens are formed by simple rules; 

e.g., an integer literal is a series of digits 

• Higher-level (nonterminal) components 

(program, statement, expression, etc.) are 

built from tokens or other nonterminals 
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Ways to specify syntax 
• Plain English (e.g., “A compound 

statement is a series of statements, 

in braces”) 

• List of alternatives; e.g.: 
 statement-list: 
  statement 
  statement  statement-list 

• Diagram;  

e.g., sign: 
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Syntax rules and diagrams 
compound-statement: 

 {  statement-list  } 

statement-list: 
 statement 

 statement   statement-list  

statement: 

 nothing 
 declaration 

 assignment 
 IO-statement 

 compound-statement 

Diagram for 

statement-list 
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Java syntax for if 

branch-statement : 

 if ( expr ) statement 

 if ( expr ) statement else statement 

• Statement may be assignment, compound 

statement, if statement, loop statement, 

method call, etc. 
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Syntax for switch 

branch-statement : 

 switch ( expr ) compound-statement 

The subordinate statement in a switch is 

normally compound, with case labels, 

alternative statements, breaks 



CS I Background for CS II David Keil        Computer Science II      7/15 

David Keil      Computer Science II Using Java       Background    7/15 29 

Loop syntax 
loop-statement: 

 while ( expression ) statement 
 do statement while ( expression ) ; 
 for ( expr  ; expr ; expr ) statement 

Loop semantics 
• The expression in the while and do…while 

statements is the exit test. 

• The expressions in the for statement are for 
initialization, exit test, and updating. 
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Lexical analysis in programming-
language translation 

• Compiler translates from higher-level 
language to assembler or machine code 

• Lexical analysis 

- Finds tokens, indivisible items of code 

- Tokens are formed by simple rules 
- Examples: literals, operators, keywords, 

  delimiters, identifiers 

- lexer stores tokens in sequence 

• Parsing applies grammar rules to build tokens 
into a structure 
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Kinds of tokens (lexical elements) 
• keyword (void, main, int, …) 

• identifier (letter or ‘_’ followed by a series of 

letters, digits, ‘_’s) 

• constant literal (numeral, double-quoted string, 

single quoted character) 

• operator (=, +, *, -) 

• punctuator (semicolon, comma, paren, brace) 

Not tokens: 
• The compiler ignores white space (space 

characters, tabs, newlines) 

• Compiler ignores comments (//…, /*…*/) 
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Context-free grammars 
• Defined by productions using  to denote 

“is defined as” 

• Symbols:  
- terminal: self-defining or defined by  
  a lexical grammar; 
- non-terminal: defined by a production 

• Examples: 
method-defn    type  ID  (  )  comp-stmt 
comp-stmt    {  stmt-list  } 
stmt-list     | stmt  stmt-list 
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The parser generates a  
parse tree of a program 

Each syntax rule is applied by putting a defined 

element’s components under the name of the element 

void main() 

{ 

} 
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2. Standard  
data types  

0.2a Describe standard Java types 

and classes* 

0.2b Correct a type error* 

0.2c  Use logical operators* 

0.2d Use bitwise operators 
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Classes and methods 
• A class is an abstract specification for objects, 

which are instances of the class; i.e., data items 

• Example: the informal concept, students, is a 

class, while a particular student is an object 

• Classes have members that are methods 

(operations) or properties (data items,  

instance variables) 

• Methods are invoked by writing an object’s or 

class’s name, a dot, and the method name, 

followed by parameter(s) in parentheses 
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A Java program defines a class 

• Program must define one public class and 

may define any number of private classes 

• This public class defines the application 

• Each class may define one or more method 

(subprogram) and attribute (data item) 

• A public class must define a method called 

main, which executes automatically 

• A method definition contains executable 

statements 
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Numeric data types 

• Definition: a specification that defines the 

storage and meaning of patterns of bits 

• Java stores two kinds of numeric values: 

integer and floating-point 

• int is a signed 32-bit integer type, with range 

of values -2G … +2G (32 bits: 232 = 4G) 

• After int x = 9;, x is an expression of type int 

• Other integer types:  

byte (8 bits), short (16 bits), long (64 bits) 

• Floating-point (fractional) types: float, double 
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Standard numeric types 
Type Storage (bits) Range 

Integer  

  byte 8 -128 .. 127 

  short 16  -32,768 .. 32,767 

  int 32  -2.1109 .. 2.1109 

  long 64  -263 .. 263 

Floating-point 

  float 32  -3.4 1038 .. 3.4 1038 

  double 64  -1.810308 .. 1.810308 
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Operator precedence 
• Parenthesized operations come first 

• Unary minus has high precedence 

• Multiplication and division precede addition 

and subtraction 

• Operations of the same precedence proceed 

from left to right 

• Examples:  
8 - 2 + 5  8 - (2 + 5)  

3 * 2 + 4 3 * (2 + 4) 3 + 2 * 4 

3 + 6 / 2 (3 + 6) / 2 -2 + 3 

1 + 3 % 2 25 % 5 * 2 

David Keil      Computer Science II Using Java       Background    7/15 40 

Overflow 
• When a value is assigned that exceeds the 

capacity of a variable, overflow occurs and 

incorrect value is stored 

• In overflow, the number of bits in the value is 

greater than the capacity of storage of the 

variable 

• Example:  
byte a = 100, b = 180; 

System.out.println(a+b); 

Output: ___ 
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Data types float and double 
• May store fractional values of great range; float 

32 bits, double 64 bits 

• Storage, based on scientific-notation concept: 

sign bit, fraction, exponent  

• The numeral “floats” left or right because the 

exponent part compensates for a shift to 

eliminate 0’s on left 
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A Boolean variable (flag)  
stores a truth value 

• boolean invalid = (age < 0); 

... 

if (invalid) 

  out.println("Invalid age”); 

• boolean is a standard Java data type with a 

range of values {false, true} (0, 1) 

• Boolean variables hold values for  

later use 

a flag may be replaced by int 
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Character-based types 

• char is a standard basic type 

• String objects are sequences of characters 

in memory 

• String is a class defined by the standard 

library package String. 

• Streams are sequences of characters 

going to output devices or coming from 

input devices 

• Files are stream objects 
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The standard data type char 

• char data items are 16 bits, representing up to 

65,536 symbols in Unicode 

• To declare a variable that stores one character: 
char c;  

• The ASCII table maps a character set to integers 

0…127 (7 bits) 

• Character literals use single quotes 

• Escape sequences express special characters: 

newline ’\n’, tab ’\t’, backspace ’\b’, single 

quote ’\’’,  null character’\0’, backslash ’\\’ 
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Java strings 
• String class declares string objects 

• String literals use double quotes: 
String stu_id = ”ab12”; 

String greeting = ”Hi”+stu_id; 

• Concatenation operator ’+’converts any 

type to String, allowing grouping of output 

items of different types in println calls 

• Methods of String class: length(), parseInt(), 

substring(), charAt() 
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String methods 
Expression Value 

String s1 = toupper(”abcd”) ABCD 

char c = s1.charAt(2); C 

String s2 = s1.substring(2,2) CD 

int i = s1.indexOf(’B’) 1 

Other methods: 
length() compareTo(t)  equals(t) 

startsWith(t)  startsWith(t, i) endsWith(t) 

contains(cs) indexOf(t) trim() indexOf(t, i) 

indexOf(c) indexOf(c, i) charAt(i), 

s.substring(i) substring(i, j) toLowerCase() 

toUpperCase() replace(c1, c2) replace(cs2, cs3) 

compareToIgnoreCase(t) equalsIgnoreCase(t) 
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Storage for four 
standard types 

 2 ‘2’ “2” 2.0 

 int char String double 
 (32 bits) (2 bytes)   
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Stream input/output 
• A stream is a sequence of characters moving 

from or to a device 

• Stored data occupies finite space;  

streams are infinite 

• Destinations/sources for streams:  

– keyboard 

– screen 

– ports 

– disk files  
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Formatting output 
• System.out.printf() enables specification of 

width, precision, and type of output elements 

• Example:  
System.out.printf(“%-6s%5.2f%n”,”Tax:”,tot); 

displays a String and a float value, with the string 

left-aligned across width of six, and the float of 

width five and precision to two decimal places 

• %n denotes end-of-line character 

• Other type specifiers: %d (decimal), %x 

(hexadecimal),  %o (octal), %e (exponential),  
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Output objects and method calls 
• Methods (subprograms) print and println cause 

output of their parameter values 

 System.out.print(“Sum”); 

 System.out.print(“Sum=”+y); 

• System is a predefined class; out is an output 

stream object, a member of System 

• println is a method of the class of out  

• “Sum” is a parameter to println 

• Values of different types may be concatenated 

with “+” operator 
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Formatted strings 

• String.format(fmt_spec, parm_list) 

returns a string formatted using 

%s string 

%n end of line 

%8d decimal integer right-flush 

 across 8 columns 

%8.2f floating-point with two  

 digits precision 

%-8s left-flush across 8 columns 
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Classes and methods for input 

• Standard Java class: Scanner 

• Input requires creation of a Scanner object and 

call to a next… method 
 Scanner in =  

  new Scanner(System.in); 

 x = in.nextInt(); 

• The method call, in.nextInt(), fetches the next 

space-delimited sequence of characters from 

the stream in and returns it as an integer value 
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Inputting numbers and strings 

double d = in.nextDouble(); 

String s = in.next();  

 // reads until white-space char 

String s = in.nextLine();  

 // reads until end of line 

Char x = in.nextDouble() is a type error 

The code above assumes that in has been 

initialized as a Scanner object 
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Java packages 

• I/O and many other features are not part of 

the Java language 

• They are made part of a Java program by 

using code packages 

• The packages are imported to the .java file 

using import at the top of the file: 

  import java.awt; 

• The standard package, which defines System, is 

imported implicitly 
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Some standard Java packages 
• java.lang (automatically imported classes) 

– System 

– String 

• java.awt: Abstract Windowing Toolkit, 

graphics classes 

• java.applet: classes for Web applets 

The standard Java library has thousands of classes.  

The Application Programming Interface documen-

tation (java.sun.com/javase/6/docs/app) explains 

each class and how to use it in Java programs 
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Relational operators 

equal-to = = not-equal-to != 

greater > less-than-or-equal <= 

less-than < greater-or-equal >= 

• Expressions with relational operators have 

Boolean values 

• Each operator has a complement 

• Tip: don’t compare doubles or Strings for 

equality 
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Logical operators 

Operation Eng. Logic Java Example 

Negation  not  ! ! (price > cost) 

Conjunction and  && a > b && b > c 

Disjunction or  || x == 1 || x == 2 

• Nested ifs may express conjunction too: 
 if (age > 0) 
 if (age < 120) 

  out.print(”Valid age”); 

• The above is equivalent to 
if (age > 0 && age < 120) 

  out.print(”Valid age”); 
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Operator precedence in 

boolean expressions 

• Parenthesized operations come first 

• Logical negation (~) has high precedence 

• Arithmetic operators precede relational 

operators 

• Relational operators (==, !=, <, <=, >, ?=) 

precede binary logical operators (||, &&) 

• && (AND) precedes || (OR) 
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Using logical operators 
out.print("Enter 3 integers: “); 

int a = in.nextInt(), | 

 b = in.nextInt(),   

 c = in.nextInt(); 

if (a == b && b == c) 

 out.print("They're the same“); 

out.print("Enter your age: “); 

int age; 

age = in.nextInt(); 

boolean impossible =  

 (age < 0 || age > 120); 

if (! impossible) 

 out.print("Thank you"); 

 

[logops.cpp] 

Boolean variable 
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Bitwise operations 
• Operations: AND (&), OR ( | ), XOR (^), 

complement (~), shift (<<, >>) 

• Each operator performs a logical 

operation on each bit of operand(s) 

• Applications: 

- Compact storage of status data 

- Storage of sets 

- Arithmetic at hardware level 

- Systems programming 
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Shift-left operator  
multiplies by a power of 2 

input << 3 

Shift-left-3 

multiplies by 8 

because 23 = 8 
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Bitwise examples 

  Java 

Operation operator     Example 

Complement ~ ~ 100000002 = 011111112 

OR |  11002  | 10012 = 11012 

AND  &  11002  & 10012 = 10002 

Left shift  <<  11012  << 1 = 110102 

Right shift  >>  110002  >> 2 =  1102 

XOR  ^  10012  ^ 10102 = 00112 
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Setting a bit to 1 with OR 
• To set nth bit of a number, create a mask 

by shifting a 1 left (n - 1)  

times, and then bitwise-OR the number 

with the mask.  

• E.g., 00012 OR 10102 = 10112 

• So to set 1st (rightmost) bit of 4-bit value 

ten (10102), OR it with 0001: 

 10 | 1 
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To set the nth bit of a number 

 int n = in.next(),  

 x = in.next(); 

 int mask = 1 << (n - 1); 

 int result = x | mask; 

The OR operation makes sure that 

the mask value’s single 1 bit sets to 

1 the corresponding bit in the result 
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Clearing a bit to 0 with AND 

• To clear nth bit of a number, create a mask by 
shifting a 1 left (n - 1) times and complement 
this; then bitwise-AND the number with the 
mask 

• E.g.,  (1) ~00012 = 11102 
 (2) 11102 AND 10112 = 10102 

(First bit in 1011 is cleared in 1010) 

• To clear first (from right) bit of 4-bit value 1110 
(10112), AND it with complement of  
1 shifted left 0 places: 
cout << (11 & ~(1 << 0)); 
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To clear the nth bit 

int n,x;  

cin >> n >> x; 

int mask = ~(1 << (n - 1)); 

 int result = x & mask; 

The AND operation makes sure that 

the mask value’s single 0 bit clears to 

0 the corresponding bit in the result 
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3. Loops and debugging 

0.3a Trace a branch or loop** 

0.3b  Solve a numeric loop problem**  

0.3c Solve a loop problem 

with strings**† 

0.3d Debug a defective loop**† 
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Algorithm: 
A precise plan to transform  

input to output in a finite number of steps 

• Program designs use algorithms 

• Most computation is algorithmic 

• Flowcharts and pseudocode can 

represent algorithms 

question answer
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Debugging a flawed design 

• Suppose we try to find the largest of three 

numbers as follows: 

 input a, b, c 

 y  a 

 if b > a 

  y  b 

 if c > a 

  y  c 

• Trace of this algorithm for (a, b, c) = (2, 4, 3) is 

above; do you see the error? 

 

 

 

 a b c y 

 2 4 3 2 

    4 

    3 
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Tracing an algorithm or process 
• Allows designer to check result of algorithm, 

including internal (undisplayed) values 

• Use one column per variable; one row per iteration. 

• Example (See prev slide), assuming input 3, 2, 1, 0: 

 quantity total output 

  0 

 3 3 

 2 5 

 1 6 

 0 6 6  
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Why trace? 

• Computer programs don’t display all 

their internal workings 

• To find and fix a car problem, the 

mechanic must look under the hood 

• A trace displays the values of all 

variables as they change 

• Tracing is crucial in debugging 

programs and systems 
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Loops and strings 
• String manipulation is a major application 

for loops 

• The parameter of charAt is called an index 
or subscript to the string 

// Finds first character after  

// first space in ‘name’ 

String name = in.nextLine(); 

for (int i=0; i < name.length; i++) 

 if (name.charAt(i) == ‘ ‘) 

   out.println(name.charAt(i+1)); 
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Extracting substrings from strings 
String s = in.nextLine();  

int num_spcs = 0, spc_1_loc = 0,  

spc_2_loc = 0; 

for (int i=1; i < s.length(); i++) 

 if (s.charAt(i) == ‘ ‘) 

 { 

  num_spcs++; 

  if (num_spcs == 2) 

   spc_2_loc = i; 

  if (num_spcs == 3) 

   spc_3_loc = i; 

 } 

int word_len = spc_3_loc – spc_2_loc; 

String third_word =  

 s.substring(spc_2_loc,  word_len); 

Example: read 

a line of text 

and extract the 

third word 
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Uncontrolled infinite loops 
• The hardest-to-find infinite loop is 

one that may exit sometimes: 
int power; 

while (power < 1000) 

{ 

 out.print(power + “ “); 

 power = power * 2; 

} 

int count = 0; 

while (count < 100) 

 out.print(count + “ “); 

 ++count; 

• To terminate, a loop 

must change a value 

that is tested in the 

exit condition 
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Boolean variables for loop control 
final int sentinel = 0; 
boolean done = false; 
int total = 0; 

while (! done) 
{ 
 // <total> stores sum of input so far 
 int input; 
 out.print(“Enter a number, 0 to exit: ”); 
 input = in.nextInt(); 
 if (input != sentinel) 
  total += input; 
 else 

  done = true; 

} 

out.print(total); 

•Boolean loop-control 
variable (flag) 
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Convergence of exit-test 
value assures termination 

• The value n converges on 0 

• This guarantees that the loop will exit 

Input n 

count  0 

while n > 0 

 n  n / 2 

 count  count + 1 
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Kinds of errors 
• Syntax: violation of grammar rule; caught  

by compiler 

• Specification: Program solves the  

wrong problem 

• Logic: Programmer’s chief concern; program 

produces incorrect or unpredictable output 

• Runtime: Cause abnormal termination due to 

invalid operations, illegal memory access, etc. 

Preventable. 
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Errors to watch for 
• Uninitialized variables 

• Unused variables or parameters 

• Poorly indented code 

• Variables, functions, or types with vague 

names (“value”, “process”, “data”...) 

• Loops not provably terminating 

• Loops that iterate once too many or  

too few times 

• Array subscripts not provably in bounds  
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Common pitfalls with loops 
• Declaring inside a loop a value updated by 

the loop 

• Iterating one too few times 

• Iterating one too many times 

• Impossible exit conditions 

- value tested not changed in loop body 

- value changed may fail to move 

  toward exit value 

• Exit condition that is never met 

David Keil      Computer Science II Using Java       Background    7/15 80 

Tracing a loop 
• When a loop produces bad results, tracing 

hidden values helps in debugging 

• Trace statement below shows garbage values 

int count, x, total; 

x = in.nextInt; 

while (input > 0) 

{ 

 out.print(“x=” + x + “ total=“ + total); 

 x = in.nextInt(); 

 total += x; 

}   [trace.java] 
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• Testing can only prove the existence of faults, 

not their absence 

• Correcting a fault late in development is 

expensive 

• Regression testing finds errors introduced by 

maintenance process 

• Integration testing determines whether 

separately developed modules work together 

• Engineering applies teamwork, standards, 

science, and math to problem solving 

Testing and correctness 
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0.4a Write a UML class diagram* 

0.4b Describe memory allocation 

for objects** 

4. Classes and objects 
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Data abstraction 
• Defn: the creation of new data types 

• Some data types, whose instances have 

components, are called compound 

• Objects are defined by their attributes 

and operations 

• Objects are instances of classes 

• Encapsulation separates classes’ 

interfaces from their implementation 
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Object-oriented design 
• Any concept is a candidate for a class: 

persons, things, places, transactions 

• Relationships among classes include 

- containment (an address object is part 

  of a customer object) 

- inheritance (scrollers and dialogs 

  are two kinds of views) 

• A class implements an abstraction; it may be 

instantiated by one or more objects 
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UML class diagrams 

Class name 

Attributes 

Methods 

Employee

name
ID
salary

display()
input()
calc-paycheck()

• Classes model state and behavior 
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Why program with classes? 
• We may model the state and behavior of 

what we want to represent: e.g., persons, 

events, collections, displayed objects 

• Classes let us model the interactions found 

in the environments we work with 

• Class libraries may be reused conveniently 

• Bookseller examples: books, customers, 

transactions (challenge: define classes  

for them) 
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Defining data types 
• Enumerated types are a simple example 

• Keyword enum enables definition of a 

named integer type whose possible values 

are specified by constant identifiers 

• Example: 
public enum Seasons 

 {Spring,Summer,Fall,Winter};  

Seasons this_season = 

 Seasons.Winter;  
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A class associates attributes 

• Class design guidelines:  

– Use data members that are attributes of 

an object whose values may persist 

– Use local variables for values that area 

only of use during execution of a method 

• Example: a value like paycheckAmount that 

is computed from wageRate and hours, 

should be a local variable 
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• A call to a method names an instance of the class, 

using a dot 
 Employee emp = new Employee(); 

 emp.display(); 

• Methods of a class have access to the members of 

that class’s instances 

  public void display()  
 {  out.print(name + hours); }  

• A method that returns an object name returns a 
reference to the object, not a copy 

Methods and objects 

David Keil      Computer Science II Using Java       Background    7/15 90 

Objects vs. object references 

• When a variable is declared with a class as 

its type, it refers to an object or is a reference 

• If Purchase is a class, then  
Purchase p = new Purchase(); 

declares an object 

• If p is a Purchase, then Purchase q = p; 

declares a reference to p 

• References store addresses  

of objects, not copies 
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Null objects 

• For any class C, the following is acceptable: 

 C x = null; 

• In that case, x is a null object reference, 

denoting no object 

• Later the variable may be given a non-null 

value: 

 x = new C(); 

• Object references may be tested for nullness: 

 if (x == null)… 
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0.5 Explain precalculus concepts* 

5. Precalculus concepts 
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Functions 
• Function: a relation of which each left-hand 

member of a tuple is in not more than one tuple 

(maps to a unique value) 

• Examples: EVEN is a function;  

> is a relation but not a function 

• Every function has a  

– Domain: set of values mapped from 

– Range: set of values mapped to 

• Computation of a function takes parameter as 

input, return value as output 
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Mathematical functions 
• Function: A set that is a mapping from  

one set to itself or to another set 

• Examples: 

Index(‘B’) = 2 Odd (3) = true  Twice(1) = 2 
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Examples of functions 

• Identity (for a set): (x  A) IA (x) = x 

• Sequence as a function: A sequence A may be 

defined as a function fA where fA(x) = Ax 

• Arithmetic operators: the operators +, -, , , 

may be defined as functions f : N  N  N 

where, for example, +(a, b) = a + b 

• Other functions: predicates (Boolean 

functions); encoding and decoding functions; 

logarithm; factorial; exponent 

David Keil      Computer Science II Using Java       Background    7/15 96 

Linear functions 

• A linear  function may be expressed  

y = ax + b   

• Its graph is a line; e.g., the two red broken 

lines above 
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Polynomial functions 

• A quadratic function (polynomial of 

degree 2) may be expressed  

y = ax2 + bx + c   

• Its graph is a parabola 

• A polynomial function is of degree 1 or 

higher: y = ax3 + bx2 + cx + d   
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Exponential functions 

• May be expressed  

y = a2x + f (x), 

where f is a 

polynomial 

• The value of any 

exponential function 

grows faster than 

any polynomial 

function 
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Polynomials and power functions 
• A power function with exponent a is  

pa : R
+  R+ s.t. y = pa(x) = xa

 

• Examples:  f (x) = 1  f (x) = x0.5 = x 

 f (x) = x  f (x) = x2 f (x) = x10  

• Polynomials extend the power functions by 

including sums of power functions 

• Polynomials may be defined on sets of natural 

numbers, in which case they are discontinuous 

(have breaks in their graphs) 
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Logarithmic functions 

• Function logb(x) is the inverse of function bx 

• Logarithmic functions grow extremely 

slowly, more slowly than y = sqrt(x) 

• Processes of decay are described by 

logarithmic functions 



CS I Background for CS II David Keil        Computer Science II      7/15 

David Keil      Computer Science II Using Java       Background    7/15 101 

Exponential and  

logarithmic functions 
• Many processes of growth and decay are 

described by exponential and logarithmic 

functions 

• Function logb(x) is the inverse of function bx 

• These functions grow extremely slowly and 

extremely quickly, respectively 

• These functions grow proportional to the base; 

i.e., the big-O analysis is independent of base 
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The factorial function 

• Factorial of n  (n!): 

 n  (n - 1)  (n - 2)  …  1 

• factorial (n) = 

 1 if n  1 

 n  factorial(n - 1) otherwise 

• (n!) expresses the number of 

permutations of a set of size n 
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Sequences 

• A sequence over A is a function s: N  A, 

written s1, s2, s3, …  

• Each element of s is called a term and the 

subscripts are called indexes 

• General formula: a rule that shows how for 

a sequence s, values of sk depend on k 

• Arithmetic sequences’ terms differ by a 

constant amount 

• Geometric sequences’ terms differ by a 

constant factor 
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Strings 
• Alphabet: a finite set of symbols, e.g.,  

{0,1}, {0, 1, …9}, {a, b, c, …, z} 

• A string is a sequence of symbols over a finite 

alphabet; * is the set of strings over  

Recursive definition: 

– Base:   *  ( =  = null string) 

– Recursive: a    s  *  sa   * 

– Restriction: only objects defined as above  

are strings 

• In set notation, * = {}  { ax | a  , x  *} 
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The binary system 

• Appropriate for two-state devices 

• Binary is the form in which all  

information is represented (numeric, text, 

graphical, sound) 

• Uses two digits (1 and 0) rather than ten 

• Like decimal, uses place values 

• We distinguish numerals (representations) 

from numbers (abstractions) 
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Relations 
• Definition: a subset of a Cartesian product 

of sets 

• A relation R is thus a set of ordered pairs, 

e.g., { (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) } 

• If R is a relation and (x, y)  R ,  

we write x R y 

• Example: > is a relation,  

because 2 > 1; 3 > 1, etc. 
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Relations and databases 

• A database table is a relation 

• Examples:  

– (names  IDs  addresses)  

– The Cartesian product of students and 

courses is the set of all possible pairings 

of course, student 

– A table of student registrations is a 

relation R  (students  courses) 
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