
CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 1

David M. Keil, Framingham State University

CSCI 252 Computer Science II

Background

1. Java compilation and syntax
2. Standard data types
3. Loops and debugging
4. Classes and objects
5. Precalculus concepts

David Keil Computer Science II Using Java Background 7/15 2 •2

Event-driven programming

0.1a Explain the Java virtual machine*

0.1b Explain the fetch-execute cycle*

0.1c Describe Java syntax*

0.1d Identify the steps in

system development*

0.1e Explain code documentation*

1. Java compilation
and syntax

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 3

The Java virtual machine
• The Java compiler translates Java code to an

assembler-like language called “byte code”

• The JVM is a program that interprets byte-

code instructions, simulating a real processor

• The java program at the command line, and

any Internet browser, contain JVMs

• The class loader in java allows program

statements from different .class files to

invoke each other

David Keil Computer Science II Using Java Background 7/15 4

Virtual machines
• Any interactive program or operating system is

an interpreter of commands that lets computer

hardware emulate a specialized machine

• Examples:

- UNIX command interpreter is

 platform independent;

- Java VM in Web browsers executes

 downloaded platform-independent byte code

• Issue: Java VM’s security – Does VM permit

byte code to write to disk, send email, etc.?

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 5

Gates

• Used to manipulate binary data

• 1 or 2 bit input, 1-bit output

• Specified using truth tables

• NOT (negation)

• AND (conjunction)

• OR (disjunction)

• Used as components of combinational circuits:

NAND, NOR, XOR, adders, etc.

David Keil Computer Science II Using Java Background 7/15 6

A simplified model computer

• RAM (random-access memory)

contains programs and data

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 7

The processor
• Initiates all actions

• Has two units:

– Control: Determines

order of operations

– Arithmetic logic:

Executes operations

on data

• Communicates with memory

• Has three registers: program counter, instruction

register, accumulator

David Keil Computer Science II Using Java Background 7/15 8

Machine-language programs

• Instructions are represented in binary

operation codes

• These may have operands, which specify

address of data to be operated on

• All operations are simple

• Instructions and data re stored in consecutive

RAM locations

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 9

The fetch-execute cycle

PC  0

Repeat

 IR  MEM(PC)

 PC  PC + 1

 Execute instruction in IR

until instruction is STOP

Instruction

Register (IR)

gets contents of

RAM referenced

by value stored

in PC

Program Counter (PC)

register gets address 0

David Keil Computer Science II Using Java Background 7/15 10

Programming languages
• Syntax:

- rules for forming tokens

 (e.g., delimiters, operators, IDs, numerals)

- rules for putting tokens together

 (e.g., statement, expression, program)

• Semantics: Meaning; i.e., a mapping from

structure of program to machine actions

(machine-code statements)

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 11

Object-oriented languages
• Data are objects, defined by attributes and

behaviors (“methods”)

• Objects send and receive messages

• Classes are templates for objects

• Features:
- encapsulation (data hiding);
- inheritance (derived classes inherit
 attributes and methods from base classes);
- polymorphism (meaning of a message
depends on class of recipient)

• Examples: Smalltalk, Simula, C++, Java

David Keil Computer Science II Using Java Background 7/15 12

Higher-level languages

• Support I/O, control structures,

and modularity

• Shield programmer from hardware and

operating-system details

• Are portable (compilable to any
runtime environment)

• Are translated to machine language or byte

code by compilers or interpreters

• Examples: COBOL, Fortran, Pascal, C,

C++, Java

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 13

Interpreting vs. compiling
• Interpreted code is executed one instruction

at a time from input stream (machine code,

Java byte code, command line)

• Compilers translate code from high-level

languages like Java to low-level form that

can be interpreted

David Keil Computer Science II Using Java Background 7/15 14

Integrated development
environments

• Editor enables code entry and modification, with

syntax highlighting

• Compiler translates Java to machine code or byte

code; provides warnings; error diagnostics

• Debugger enables trace of variables

• Help systems provide reference

• Examples: NetBeans, BlueJ, Eclipse

• Java Development Kit (Sun) provides

 compiler, debugger

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 15

Projects
• Most IDEs organize Java programs as

projects consisting of multiple
source-code files

• Examples: BlueJ, Eclipse, NetBeans

• Often developers create one source file per

Java class, compile source files separately,
link compiled .class files

• If .jar file is produced, then it is executable
alone if the Java runtime environment is on

the computer

David Keil Computer Science II Using Java Background 7/15 16

Projects and object files (C, C++)
• Project: a set of source files ready to link

together after compilation

• Programmer selects files to include based

on class and function dependencies

• Compilation produces intermediate linkable
object files (.obj or .o), which may or may

not define main; some function addresses

may not be resolved

• Build command automatically compiles any

source files modified since last compile

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 17

The system development process

Phases (may repeat):

• Analysis: specifies input

and output

• Program design: prepares

algorithms, data structures

• Coding: implements design as a

program in a language

• Testing: evaluates working program

• Maintenance: addresses errors and

needs not found in previous stages

David Keil Computer Science II Using Java Background 7/15 18

Standards for system specification

• Specification (requirements document) gives:

– input

– output

– correspondence between the two

• User interface should be specified

• If input is via file or port, specify this

• Any repeated steps should be stated

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 19

Design concerns
• Simplicity (via abstraction, structure)

• Performance (throughput, response time)

• Reliability (redundancy, recovery, integrity)

• Evolvability (adaptation to changes in function
and scale)

• Security (access control privacy, authentication)

• Design principles: abstraction, information
hiding, modularity, packages, version control,
divide and conquer, layering, hierarchy, reuse,
interfaces, encapsulation, virtual machines

David Keil Computer Science II Using Java Background 7/15 20

Modular decomposition
• One strategy: divide and conquer

• All programming languages support modularity

• An organization is modular

• Modular design may be top-down

• Subprograms implement modular designs

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 21

Documentation guidelines

• State purpose of every program and every

component of large programs at top

• Give meaningful names to variables

• Use well-named constants

• Use comments to clarify intention

• Format source code for clarity

• To be debugged or maintained, a program

must be understandable

David Keil Computer Science II Using Java Background 7/15 22

Formatting source code
• Example:
void main()!

{

 System.out.println(”Hello”);

}

• Leave an empty line before a method

definition such as main

• Align pairs of braces vertically

• Indent statements 2-3 spaces

• Readability is a major concern

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 23

Documenting exercises

• In this course, all programs are to be

documented by comments

• Purpose of program is to be at top

• Each block of code is to have a comment

stating its purpose

• Comments include your name, the date, and

reference to course objective

David Keil Computer Science II Using Java Background 7/15 24

Specifying grammar rules

• A language is a set of strings, e.g., the set

of all possible C++ programs

• A grammar is a set of rules for what is

permitted in a language

• Java tokens are formed by simple rules;

e.g., an integer literal is a series of digits

• Higher-level (nonterminal) components

(program, statement, expression, etc.) are

built from tokens or other nonterminals

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 25

Ways to specify syntax
• Plain English (e.g., “A compound

statement is a series of statements,

in braces”)

• List of alternatives; e.g.:
 statement-list:
 statement
 statement statement-list

• Diagram;

e.g., sign:

David Keil Computer Science II Using Java Background 7/15 26

Syntax rules and diagrams
compound-statement:

 { statement-list }

statement-list:
 statement

 statement statement-list

statement:

 nothing
 declaration

 assignment
 IO-statement

 compound-statement

Diagram for

statement-list

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 27

Java syntax for if

branch-statement :

 if (expr) statement

 if (expr) statement else statement

• Statement may be assignment, compound

statement, if statement, loop statement,

method call, etc.

David Keil Computer Science II Using Java Background 7/15 28

Syntax for switch

branch-statement :

 switch (expr) compound-statement

The subordinate statement in a switch is

normally compound, with case labels,

alternative statements, breaks

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 29

Loop syntax
loop-statement:

 while (expression) statement
 do statement while (expression) ;
 for (expr ; expr ; expr) statement

Loop semantics
• The expression in the while and do…while

statements is the exit test.

• The expressions in the for statement are for
initialization, exit test, and updating.

David Keil Computer Science II Using Java Background 7/15 30

Lexical analysis in programming-
language translation

• Compiler translates from higher-level
language to assembler or machine code

• Lexical analysis

- Finds tokens, indivisible items of code

- Tokens are formed by simple rules
- Examples: literals, operators, keywords,

 delimiters, identifiers

- lexer stores tokens in sequence

• Parsing applies grammar rules to build tokens
into a structure

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 31

Kinds of tokens (lexical elements)
• keyword (void, main, int, …)

• identifier (letter or ‘_’ followed by a series of

letters, digits, ‘_’s)

• constant literal (numeral, double-quoted string,

single quoted character)

• operator (=, +, *, -)

• punctuator (semicolon, comma, paren, brace)

Not tokens:
• The compiler ignores white space (space

characters, tabs, newlines)

• Compiler ignores comments (//…, /*…*/)

David Keil Computer Science II Using Java Background 7/15 32

Context-free grammars
• Defined by productions using  to denote

“is defined as”

• Symbols:
- terminal: self-defining or defined by
 a lexical grammar;
- non-terminal: defined by a production

• Examples:
method-defn  type ID () comp-stmt
comp-stmt  { stmt-list }
stmt-list   | stmt stmt-list

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 33

The parser generates a
parse tree of a program

Each syntax rule is applied by putting a defined

element’s components under the name of the element

void main()

{

}

David Keil Computer Science II Using Java Background 7/15 34

2. Standard
data types

0.2a Describe standard Java types

and classes*

0.2b Correct a type error*

0.2c Use logical operators*

0.2d Use bitwise operators

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 35

Classes and methods
• A class is an abstract specification for objects,

which are instances of the class; i.e., data items

• Example: the informal concept, students, is a

class, while a particular student is an object

• Classes have members that are methods

(operations) or properties (data items,

instance variables)

• Methods are invoked by writing an object’s or

class’s name, a dot, and the method name,

followed by parameter(s) in parentheses

David Keil Computer Science II Using Java Background 7/15 36

A Java program defines a class

• Program must define one public class and

may define any number of private classes

• This public class defines the application

• Each class may define one or more method

(subprogram) and attribute (data item)

• A public class must define a method called

main, which executes automatically

• A method definition contains executable

statements

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 37

Numeric data types

• Definition: a specification that defines the

storage and meaning of patterns of bits

• Java stores two kinds of numeric values:

integer and floating-point

• int is a signed 32-bit integer type, with range

of values -2G … +2G (32 bits: 232 = 4G)

• After int x = 9;, x is an expression of type int

• Other integer types:

byte (8 bits), short (16 bits), long (64 bits)

• Floating-point (fractional) types: float, double

David Keil Computer Science II Using Java Background 7/15 38

Standard numeric types
Type Storage (bits) Range

Integer

 byte 8 -128 .. 127

 short 16 -32,768 .. 32,767

 int 32 -2.1109 .. 2.1109

 long 64 -263 .. 263

Floating-point

 float 32 -3.4 1038 .. 3.4 1038

 double 64 -1.810308 .. 1.810308

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 39

Operator precedence
• Parenthesized operations come first

• Unary minus has high precedence

• Multiplication and division precede addition

and subtraction

• Operations of the same precedence proceed

from left to right

• Examples:
8 - 2 + 5 8 - (2 + 5)

3 * 2 + 4 3 * (2 + 4) 3 + 2 * 4

3 + 6 / 2 (3 + 6) / 2 -2 + 3

1 + 3 % 2 25 % 5 * 2

David Keil Computer Science II Using Java Background 7/15 40

Overflow
• When a value is assigned that exceeds the

capacity of a variable, overflow occurs and

incorrect value is stored

• In overflow, the number of bits in the value is

greater than the capacity of storage of the

variable

• Example:
byte a = 100, b = 180;

System.out.println(a+b);

Output: ___

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 41

Data types float and double
• May store fractional values of great range; float

32 bits, double 64 bits

• Storage, based on scientific-notation concept:

sign bit, fraction, exponent

• The numeral “floats” left or right because the

exponent part compensates for a shift to

eliminate 0’s on left

David Keil Computer Science II Using Java Background 7/15 42

A Boolean variable (flag)
stores a truth value

• boolean invalid = (age < 0);

...

if (invalid)

 out.println("Invalid age”);

• boolean is a standard Java data type with a

range of values {false, true} (0, 1)

• Boolean variables hold values for

later use

a flag may be replaced by int

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 43

Character-based types

• char is a standard basic type

• String objects are sequences of characters

in memory

• String is a class defined by the standard

library package String.

• Streams are sequences of characters

going to output devices or coming from

input devices

• Files are stream objects

David Keil Computer Science II Using Java Background 7/15 44

The standard data type char

• char data items are 16 bits, representing up to

65,536 symbols in Unicode

• To declare a variable that stores one character:
char c;

• The ASCII table maps a character set to integers

0…127 (7 bits)

• Character literals use single quotes

• Escape sequences express special characters:

newline ’\n’, tab ’\t’, backspace ’\b’, single

quote ’\’’, null character’\0’, backslash ’\\’

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 45

Java strings
• String class declares string objects

• String literals use double quotes:
String stu_id = ”ab12”;

String greeting = ”Hi”+stu_id;

• Concatenation operator ’+’converts any

type to String, allowing grouping of output

items of different types in println calls

• Methods of String class: length(), parseInt(),

substring(), charAt()

David Keil Computer Science II Using Java Background 7/15 46

String methods
Expression Value

String s1 = toupper(”abcd”) ABCD

char c = s1.charAt(2); C

String s2 = s1.substring(2,2) CD

int i = s1.indexOf(’B’) 1

Other methods:
length() compareTo(t) equals(t)

startsWith(t) startsWith(t, i) endsWith(t)

contains(cs) indexOf(t) trim() indexOf(t, i)

indexOf(c) indexOf(c, i) charAt(i),

s.substring(i) substring(i, j) toLowerCase()

toUpperCase() replace(c1, c2) replace(cs2, cs3)

compareToIgnoreCase(t) equalsIgnoreCase(t)

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 47

Storage for four
standard types

 2 ‘2’ “2” 2.0

 int char String double
 (32 bits) (2 bytes)

David Keil Computer Science II Using Java Background 7/15 48

Stream input/output
• A stream is a sequence of characters moving

from or to a device

• Stored data occupies finite space;

streams are infinite

• Destinations/sources for streams:

– keyboard

– screen

– ports

– disk files

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 49

Formatting output
• System.out.printf() enables specification of

width, precision, and type of output elements

• Example:
System.out.printf(“%-6s%5.2f%n”,”Tax:”,tot);

displays a String and a float value, with the string

left-aligned across width of six, and the float of

width five and precision to two decimal places

• %n denotes end-of-line character

• Other type specifiers: %d (decimal), %x

(hexadecimal), %o (octal), %e (exponential),

David Keil Computer Science II Using Java Background 7/15 50

Output objects and method calls
• Methods (subprograms) print and println cause

output of their parameter values

 System.out.print(“Sum”);

 System.out.print(“Sum=”+y);

• System is a predefined class; out is an output

stream object, a member of System

• println is a method of the class of out

• “Sum” is a parameter to println

• Values of different types may be concatenated

with “+” operator

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 51

Formatted strings

• String.format(fmt_spec, parm_list)

returns a string formatted using

%s string

%n end of line

%8d decimal integer right-flush

 across 8 columns

%8.2f floating-point with two

 digits precision

%-8s left-flush across 8 columns

David Keil Computer Science II Using Java Background 7/15 52

Classes and methods for input

• Standard Java class: Scanner

• Input requires creation of a Scanner object and

call to a next… method
 Scanner in =

 new Scanner(System.in);

 x = in.nextInt();

• The method call, in.nextInt(), fetches the next

space-delimited sequence of characters from

the stream in and returns it as an integer value

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 53

Inputting numbers and strings

double d = in.nextDouble();

String s = in.next();

 // reads until white-space char

String s = in.nextLine();

 // reads until end of line

Char x = in.nextDouble() is a type error

The code above assumes that in has been

initialized as a Scanner object

David Keil Computer Science II Using Java Background 7/15 54

Java packages

• I/O and many other features are not part of

the Java language

• They are made part of a Java program by

using code packages

• The packages are imported to the .java file

using import at the top of the file:

 import java.awt;

• The standard package, which defines System, is

imported implicitly

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 55

Some standard Java packages
• java.lang (automatically imported classes)

– System

– String

• java.awt: Abstract Windowing Toolkit,

graphics classes

• java.applet: classes for Web applets

The standard Java library has thousands of classes.

The Application Programming Interface documen-

tation (java.sun.com/javase/6/docs/app) explains

each class and how to use it in Java programs

David Keil Computer Science II Using Java Background 7/15 56

Relational operators

equal-to = = not-equal-to !=

greater > less-than-or-equal <=

less-than < greater-or-equal >=

• Expressions with relational operators have

Boolean values

• Each operator has a complement

• Tip: don’t compare doubles or Strings for

equality

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 57

Logical operators

Operation Eng. Logic Java Example

Negation not  ! ! (price > cost)

Conjunction and  && a > b && b > c

Disjunction or  || x == 1 || x == 2

• Nested ifs may express conjunction too:
 if (age > 0)
 if (age < 120)

 out.print(”Valid age”);

• The above is equivalent to
if (age > 0 && age < 120)

 out.print(”Valid age”);

David Keil Computer Science II Using Java Background 7/15 58

Operator precedence in

boolean expressions

• Parenthesized operations come first

• Logical negation (~) has high precedence

• Arithmetic operators precede relational

operators

• Relational operators (==, !=, <, <=, >, ?=)

precede binary logical operators (||, &&)

• && (AND) precedes || (OR)

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 59

Using logical operators
out.print("Enter 3 integers: “);

int a = in.nextInt(), |

 b = in.nextInt(),

 c = in.nextInt();

if (a == b && b == c)

 out.print("They're the same“);

out.print("Enter your age: “);

int age;

age = in.nextInt();

boolean impossible =

 (age < 0 || age > 120);

if (! impossible)

 out.print("Thank you");

[logops.cpp]

Boolean variable

David Keil Computer Science II Using Java Background 7/15 60

Bitwise operations
• Operations: AND (&), OR (|), XOR (^),

complement (~), shift (<<, >>)

• Each operator performs a logical

operation on each bit of operand(s)

• Applications:

- Compact storage of status data

- Storage of sets

- Arithmetic at hardware level

- Systems programming

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 61

Shift-left operator
multiplies by a power of 2

input << 3

Shift-left-3

multiplies by 8

because 23 = 8

David Keil Computer Science II Using Java Background 7/15 62

Bitwise examples

 Java

Operation operator Example

Complement ~ ~ 100000002 = 011111112

OR | 11002 | 10012 = 11012

AND & 11002 & 10012 = 10002

Left shift << 11012 << 1 = 110102

Right shift >> 110002 >> 2 = 1102

XOR ^ 10012 ^ 10102 = 00112

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 63

Setting a bit to 1 with OR
• To set nth bit of a number, create a mask

by shifting a 1 left (n - 1)

times, and then bitwise-OR the number

with the mask.

• E.g., 00012 OR 10102 = 10112

• So to set 1st (rightmost) bit of 4-bit value

ten (10102), OR it with 0001:

 10 | 1

David Keil Computer Science II Using Java Background 7/15 64

To set the nth bit of a number

 int n = in.next(),

 x = in.next();

 int mask = 1 << (n - 1);

 int result = x | mask;

The OR operation makes sure that

the mask value’s single 1 bit sets to

1 the corresponding bit in the result

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 65

Clearing a bit to 0 with AND

• To clear nth bit of a number, create a mask by
shifting a 1 left (n - 1) times and complement
this; then bitwise-AND the number with the
mask

• E.g., (1) ~00012 = 11102
 (2) 11102 AND 10112 = 10102

(First bit in 1011 is cleared in 1010)

• To clear first (from right) bit of 4-bit value 1110
(10112), AND it with complement of
1 shifted left 0 places:
cout << (11 & ~(1 << 0));

David Keil Computer Science II Using Java Background 7/15 66

To clear the nth bit

int n,x;

cin >> n >> x;

int mask = ~(1 << (n - 1));

 int result = x & mask;

The AND operation makes sure that

the mask value’s single 0 bit clears to

0 the corresponding bit in the result

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 67

3. Loops and debugging

0.3a Trace a branch or loop**

0.3b Solve a numeric loop problem**

0.3c Solve a loop problem

with strings**†

0.3d Debug a defective loop**†

David Keil Computer Science II Using Java Background 7/15 68

Algorithm:
A precise plan to transform

input to output in a finite number of steps

• Program designs use algorithms

• Most computation is algorithmic

• Flowcharts and pseudocode can

represent algorithms

question answer

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 69

Debugging a flawed design

• Suppose we try to find the largest of three

numbers as follows:

 input a, b, c

 y  a

 if b > a

 y  b

 if c > a

 y  c

• Trace of this algorithm for (a, b, c) = (2, 4, 3) is

above; do you see the error?

 a b c y

 2 4 3 2

 4

 3

David Keil Computer Science II Using Java Background 7/15 70

Tracing an algorithm or process
• Allows designer to check result of algorithm,

including internal (undisplayed) values

• Use one column per variable; one row per iteration.

• Example (See prev slide), assuming input 3, 2, 1, 0:

 quantity total output

 0

 3 3

 2 5

 1 6

 0 6 6

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 71

Why trace?

• Computer programs don’t display all

their internal workings

• To find and fix a car problem, the

mechanic must look under the hood

• A trace displays the values of all

variables as they change

• Tracing is crucial in debugging

programs and systems

David Keil Computer Science II Using Java Background 7/15 72

Loops and strings
• String manipulation is a major application

for loops

• The parameter of charAt is called an index
or subscript to the string

// Finds first character after

// first space in ‘name’

String name = in.nextLine();

for (int i=0; i < name.length; i++)

 if (name.charAt(i) == ‘ ‘)

 out.println(name.charAt(i+1));

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 73

Extracting substrings from strings
String s = in.nextLine();

int num_spcs = 0, spc_1_loc = 0,

spc_2_loc = 0;

for (int i=1; i < s.length(); i++)

 if (s.charAt(i) == ‘ ‘)

 {

 num_spcs++;

 if (num_spcs == 2)

 spc_2_loc = i;

 if (num_spcs == 3)

 spc_3_loc = i;

 }

int word_len = spc_3_loc – spc_2_loc;

String third_word =

 s.substring(spc_2_loc, word_len);

Example: read

a line of text

and extract the

third word

David Keil Computer Science II Using Java Background 7/15 74

Uncontrolled infinite loops
• The hardest-to-find infinite loop is

one that may exit sometimes:
int power;

while (power < 1000)

{

 out.print(power + “ “);

 power = power * 2;

}

int count = 0;

while (count < 100)

 out.print(count + “ “);

 ++count;

• To terminate, a loop

must change a value

that is tested in the

exit condition

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 75

Boolean variables for loop control
final int sentinel = 0;
boolean done = false;
int total = 0;

while (! done)
{
 // <total> stores sum of input so far
 int input;
 out.print(“Enter a number, 0 to exit: ”);
 input = in.nextInt();
 if (input != sentinel)
 total += input;
 else

 done = true;

}

out.print(total);

•Boolean loop-control
variable (flag)

David Keil Computer Science II Using Java Background 7/15 76

Convergence of exit-test
value assures termination

• The value n converges on 0

• This guarantees that the loop will exit

Input n

count  0

while n > 0

 n  n / 2

 count  count + 1

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 77

Kinds of errors
• Syntax: violation of grammar rule; caught

by compiler

• Specification: Program solves the

wrong problem

• Logic: Programmer’s chief concern; program

produces incorrect or unpredictable output

• Runtime: Cause abnormal termination due to

invalid operations, illegal memory access, etc.

Preventable.

David Keil Computer Science II Using Java Background 7/15 78

Errors to watch for
• Uninitialized variables

• Unused variables or parameters

• Poorly indented code

• Variables, functions, or types with vague

names (“value”, “process”, “data”...)

• Loops not provably terminating

• Loops that iterate once too many or

too few times

• Array subscripts not provably in bounds

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 79

Common pitfalls with loops
• Declaring inside a loop a value updated by

the loop

• Iterating one too few times

• Iterating one too many times

• Impossible exit conditions

- value tested not changed in loop body

- value changed may fail to move

 toward exit value

• Exit condition that is never met

David Keil Computer Science II Using Java Background 7/15 80

Tracing a loop
• When a loop produces bad results, tracing

hidden values helps in debugging

• Trace statement below shows garbage values

int count, x, total;

x = in.nextInt;

while (input > 0)

{

 out.print(“x=” + x + “ total=“ + total);

 x = in.nextInt();

 total += x;

} [trace.java]

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 81

• Testing can only prove the existence of faults,

not their absence

• Correcting a fault late in development is

expensive

• Regression testing finds errors introduced by

maintenance process

• Integration testing determines whether

separately developed modules work together

• Engineering applies teamwork, standards,

science, and math to problem solving

Testing and correctness

David Keil Computer Science II Using Java Background 7/15 82

0.4a Write a UML class diagram*

0.4b Describe memory allocation

for objects**

4. Classes and objects

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 83

Data abstraction
• Defn: the creation of new data types

• Some data types, whose instances have

components, are called compound

• Objects are defined by their attributes

and operations

• Objects are instances of classes

• Encapsulation separates classes’

interfaces from their implementation

David Keil Computer Science II Using Java Background 7/15 84

Object-oriented design
• Any concept is a candidate for a class:

persons, things, places, transactions

• Relationships among classes include

- containment (an address object is part

 of a customer object)

- inheritance (scrollers and dialogs

 are two kinds of views)

• A class implements an abstraction; it may be

instantiated by one or more objects

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 85

UML class diagrams

Class name

Attributes

Methods

Employee

name
ID
salary

display()
input()
calc-paycheck()

• Classes model state and behavior

David Keil Computer Science II Using Java Background 7/15 86

Why program with classes?
• We may model the state and behavior of

what we want to represent: e.g., persons,

events, collections, displayed objects

• Classes let us model the interactions found

in the environments we work with

• Class libraries may be reused conveniently

• Bookseller examples: books, customers,

transactions (challenge: define classes

for them)

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 87

Defining data types
• Enumerated types are a simple example

• Keyword enum enables definition of a

named integer type whose possible values

are specified by constant identifiers

• Example:
public enum Seasons

 {Spring,Summer,Fall,Winter};

Seasons this_season =

 Seasons.Winter;

David Keil Computer Science II Using Java Background 7/15 88

A class associates attributes

• Class design guidelines:

– Use data members that are attributes of

an object whose values may persist

– Use local variables for values that area

only of use during execution of a method

• Example: a value like paycheckAmount that

is computed from wageRate and hours,

should be a local variable

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 89

• A call to a method names an instance of the class,

using a dot
 Employee emp = new Employee();

 emp.display();

• Methods of a class have access to the members of

that class’s instances

 public void display()
 { out.print(name + hours); }

• A method that returns an object name returns a
reference to the object, not a copy

Methods and objects

David Keil Computer Science II Using Java Background 7/15 90

Objects vs. object references

• When a variable is declared with a class as

its type, it refers to an object or is a reference

• If Purchase is a class, then
Purchase p = new Purchase();

declares an object

• If p is a Purchase, then Purchase q = p;

declares a reference to p

• References store addresses

of objects, not copies

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 91

Null objects

• For any class C, the following is acceptable:

 C x = null;

• In that case, x is a null object reference,

denoting no object

• Later the variable may be given a non-null

value:

 x = new C();

• Object references may be tested for nullness:

 if (x == null)…

David Keil Computer Science II Using Java Background 7/15 92

0.5 Explain precalculus concepts*

5. Precalculus concepts

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 93

Functions
• Function: a relation of which each left-hand

member of a tuple is in not more than one tuple

(maps to a unique value)

• Examples: EVEN is a function;

> is a relation but not a function

• Every function has a

– Domain: set of values mapped from

– Range: set of values mapped to

• Computation of a function takes parameter as

input, return value as output

•David Keil Computer Science I Using Java 1. Design 8/09 94

Mathematical functions
• Function: A set that is a mapping from

one set to itself or to another set

• Examples:

Index(‘B’) = 2 Odd (3) = true Twice(1) = 2

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 95

Examples of functions

• Identity (for a set): (x  A) IA (x) = x

• Sequence as a function: A sequence A may be

defined as a function fA where fA(x) = Ax

• Arithmetic operators: the operators +, -, , ,

may be defined as functions f : N  N  N

where, for example, +(a, b) = a + b

• Other functions: predicates (Boolean

functions); encoding and decoding functions;

logarithm; factorial; exponent

David Keil Computer Science II Using Java Background 7/15 96

Linear functions

• A linear function may be expressed

y = ax + b

• Its graph is a line; e.g., the two red broken

lines above

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 97

Polynomial functions

• A quadratic function (polynomial of

degree 2) may be expressed

y = ax2 + bx + c

• Its graph is a parabola

• A polynomial function is of degree 1 or

higher: y = ax3 + bx2 + cx + d

David Keil Computer Science II Using Java Background 7/15 98

Exponential functions

• May be expressed

y = a2x + f (x),

where f is a

polynomial

• The value of any

exponential function

grows faster than

any polynomial

function

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 99

Polynomials and power functions
• A power function with exponent a is

pa : R
+  R+ s.t. y = pa(x) = xa

• Examples: f (x) = 1 f (x) = x0.5 = x

 f (x) = x f (x) = x2 f (x) = x10

• Polynomials extend the power functions by

including sums of power functions

• Polynomials may be defined on sets of natural

numbers, in which case they are discontinuous

(have breaks in their graphs)

David Keil Computer Science II Using Java Background 7/15 100

Logarithmic functions

• Function logb(x) is the inverse of function bx

• Logarithmic functions grow extremely

slowly, more slowly than y = sqrt(x)

• Processes of decay are described by

logarithmic functions

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 101

Exponential and

logarithmic functions
• Many processes of growth and decay are

described by exponential and logarithmic

functions

• Function logb(x) is the inverse of function bx

• These functions grow extremely slowly and

extremely quickly, respectively

• These functions grow proportional to the base;

i.e., the big-O analysis is independent of base

David Keil Computer Science II Using Java Background 7/15 102

The factorial function

• Factorial of n (n!):

 n  (n - 1)  (n - 2)  …  1

• factorial (n) =

 1 if n  1

 n  factorial(n - 1) otherwise

• (n!) expresses the number of

permutations of a set of size n

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 103

Sequences

• A sequence over A is a function s: N  A,

written s1, s2, s3, …

• Each element of s is called a term and the

subscripts are called indexes

• General formula: a rule that shows how for

a sequence s, values of sk depend on k

• Arithmetic sequences’ terms differ by a

constant amount

• Geometric sequences’ terms differ by a

constant factor

David Keil Computer Science II Using Java Background 7/15 104

Strings
• Alphabet: a finite set of symbols, e.g.,

{0,1}, {0, 1, …9}, {a, b, c, …, z}

• A string is a sequence of symbols over a finite

alphabet; * is the set of strings over 

Recursive definition:

– Base:   * ( =  = null string)

– Recursive: a    s  *  sa   *

– Restriction: only objects defined as above

are strings

• In set notation, * = {}  { ax | a  , x  *}

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 105

The binary system

• Appropriate for two-state devices

• Binary is the form in which all

information is represented (numeric, text,

graphical, sound)

• Uses two digits (1 and 0) rather than ten

• Like decimal, uses place values

• We distinguish numerals (representations)

from numbers (abstractions)

David Keil Computer Science II Using Java Background 7/15 106

Relations
• Definition: a subset of a Cartesian product

of sets

• A relation R is thus a set of ordered pairs,

e.g., { (2,1), (3,1), (3,2), (4,1), (4,2), (4,3) }

• If R is a relation and (x, y)  R ,

we write x R y

• Example: > is a relation,

because 2 > 1; 3 > 1, etc.

•D. Keil Discrete Structures for Computer Science Background 8/14 •106

CS I Background for CS II David Keil Computer Science II 7/15

David Keil Computer Science II Using Java Background 7/15 107

Relations and databases

• A database table is a relation

• Examples:

– (names  IDs  addresses)

– The Cartesian product of students and

courses is the set of all possible pairings

of course, student

– A table of student registrations is a

relation R  (students  courses)

David Keil Computer Science II Using Java Background 7/15 108

References

Cay Horstmann. Big Java, 3rd ed. Wiley, 2008.

D. Keil. Java file input/output. Classroom

handout, 2008.

D. Keil. Reading and displaying file records.

Classroom handout, 2008.

