
1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 1

David M. Keil, Framingham State University

CSCI 252 Computer Science II Using Java

1. Data abstraction and Java classes

2. Encapsulation

3. Code reuse and class debugging

4. Exception handling

3. Java class
design

David Keil Computer Science II 3. Classes 7/15 2

Inquiry

• How may we represent things, people,

places, and events?

• What Java classes do we know about?

• How does a software developer step

back from the details of data items?

• What is abstraction?

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 3

Topic objective

Define and test Java classes,

explaining object-oriented

design concepts.

David Keil Computer Science II 3. Classes 7/15 4

• What’s an object?

• How are related data items associated

in Java?

• What Java classes have we seen?

• Is database technology relevant to

object-oriented programming?

1. Data abstraction

and Java classes

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 5

Subtopic objectives

3.1a Describe Java

data abstraction**

3.1b Define a Java class**

David Keil Computer Science II 3. Classes 7/15 6

UML class diagrams

Class name

Attributes

Methods

Employee

name
ID
salary

display()
input()
calc-paycheck()

• Classes model state and behavior

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 7

Why program with classes?
• We may model the state and behavior of

what we want to represent: e.g., persons,

events, collections, displayed objects

• Classes let us model the interactions found

in the environments we work with

• Class libraries may be reused conveniently

• Bookseller examples: books, customers,

transactions (challenge: define classes

for them)

David Keil Computer Science II 3. Classes 7/15 8

Data abstraction
• Defn: the creation of named data types

• Some data types, whose instances have

components, are called compound

• Objects are defined by their attributes

and operations

• Objects are instances of classes

• Encapsulation separates classes’

interfaces from their implementation

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 9

Defining data types
• Enumerated types are a simple example

• Keyword enum enables definition of a

named integer type whose possible values

are specified by constant identifiers

• Example:
public enum Seasons

 {Spring,Summer,Fall,Winter};

Seasons this_season =

 Seasons.Winter;

David Keil Computer Science II 3. Classes 7/15 10

A class associates attributes

• Class design guidelines:

– Use data members that are attributes of

an object whose values may persist

– Use local variables for values that area

only of use during execution of a method

• Example: a value like paycheckAmount that

is computed from wageRate and hours,

should be a local variable

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 11

Object-oriented design
• Any concept is a candidate for a class:

persons, things, places, transactions

• Relationships among classes include

- containment (an address object is part

 of a customer object)

- inheritance (scrollers and dialogs

 are two kinds of views)

• A class implements an abstraction; it may be

instantiated by one or more objects

David Keil Computer Science II 3. Classes 7/15 12

Objects and classes
 An object is a compound data item whose

attributes (data members or instance fields)

may be of types chosen by the programmer

• Example:
 public class Location

{ public int x, y; };

• Usage:
 Location loc = new Location;

loc.x = 5;

loc.y = 10;

Class (data type)

Reference to instance of class

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 13

Classes
• Programmer may define a class name and

use it to declare instances (objects)

• Member data items (also called “instance

variables”) exist in memory only when we

declare instances of a class

• We may use object name, dot, and member

name to refer to a public class member:

 out.print(loc.x);

David Keil Computer Science II 3. Classes 7/15 14

Classes associate values
• An object implements the database concept of

record or tuple

• Example:
public enum Team { RedSox,Yankees };

public class Game

{

 public Team home_team, visitor_team;

 public int home_score, visitor_score;

};

• Game associates teams with each other and
with integers (scores)

• Instance: Game g = new Game();

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 15

Classes, instances, members

• A class has 0 or more instances and

occupies no memory

• A data member (aka “instance variable”,

“field”) is part of an instance; occupies

space in memory

instance

members

class

instance

David Keil Computer Science II 3. Classes 7/15 16

Using a class without methods
public class Employee {

 public String name;

 public int hours;

};

public static void main(String[] args)

{

 Employee emp = new Employee();

 emp.name = “Dale”;

 emp.hours = 35;

 out.print(emp.name + “ worked “

 + emp.hours + “ hours.”);

}

Output: Dale worked 35 hours.

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 17

Creating instances of a class

public class Item

{

 String id;

 double price;

};

public static void main(String[] args)

{

 Item item1 = new Item(),

 item2 = new Item();

}

• item1, item2 are references to (addresses of) 2 objects

class name

instances of class

David Keil Computer Science II 3. Classes 7/15 18

Classes normally have methods
Class: a compound type defined by data attributes

and operations
 public class Employee

{

 String name;

 int hours;

 public void display()

 { out.print(name + “ “ + hours); }

 };

Object: an instance of a class
 Employee emp1 = new Employee(),

 emp2 = new Employee();

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 19

A class with methods
public class Employee

{

 String name;

 int hours;

 void input() {

 out.print(“Enter name, hrs: “);

 name = in.next(); hours = in.nextInt();

 }

 void display()

 { out.print(name + “ worked “ + hours + “ hrs”); };

}

public static void main(String[] args)

{

 Employee emp = new Employee();

 emp.input();

 emp.display();

}

Class

Instance of class

Methods

David Keil Computer Science II 3. Classes 7/15 20

• A call to a method names an instance of the class,

using a dot
 Employee emp = new Employee();

 emp.display();

• Methods of a class have access to the members of

that class’s instances
public void display()

{ out.print(name + hours); }

• A method that returns an object name returns a
reference to the object, not a copy

Methods and objects

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 21

Shadowing

• A parameter or local variable shadows a

data member if it has the same name

• Example: Suppose x is a member of the

class whose method is setX:
 void setX(int x)

 {

 this.x = x;

 }

• Then parameter x shadows data member x

David Keil Computer Science II 3. Classes 7/15 22

Degenerate classes

• A degenerate class is one that has

no instances

• Example: the class whose name is the

same as the argument to java when the

class file is run at the command line

• The method main is a member of a

degenerate class

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 23

Objects vs. object references

• When a variable is declared with a class as

its type, it refers to an object or is a reference

• If Purchase is a class, then
Purchase p = new Purchase();

declares an object

• If p is a Purchase, then Purchase q = p;

declares a reference to p

• References store addresses

of objects, not copies

David Keil Computer Science II 3. Classes 7/15 24

References are addresses

• A String instance’s name is a reference
(name of an address):
String name = new String(“Bob”);

• More than one reference may refer to the
same address:
String p = name;

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 25

• How transparent are objects?

• What is hidden in a class? Why?

• What is the process of creating

objects in Java?

• What is a reference?

2. Encapsulation

David Keil Computer Science II 3. Classes 7/15 26

Subtopic objectives

3.2a Describe Java encapsulation*

3.2b Write and document a class

with encapsulation*

3.2c Describe class

debugging concepts

3.3d Test and debug a class**†

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 27

Interface and implementation

• Interface: public method declarations,

accessible from client code

• Implementation: private members and

definitions of member methods

• A class’s user needs to know only its interface

• A programmer writing or maintaining a class
must understand its implementation

• Access specifiers: public, private

David Keil Computer Science II 3. Classes 7/15 28

Encapsulation hides data
public class Employee.

{

 public void input();

 public void display();

 private String name;

 private int hours;

};

hidden

public static void

 main()

{

 Employee emp =

 new Employee();

 emp.hours = 40;

 emp.input();

} invalid valid

Public members are accessible from outside a

class, private members are hidden

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 29

Interface: what the client code sees

• Methods comprise a class’s interface

• Example: Java documentation tells the

methods of the System, Scanner, and Math

classes, but not the data members

• A programmer who uses a class is called

the client

• Client code may change even if data

members (not in interface) change

David Keil Computer Science II 3. Classes 7/15 30

Cohesion and coupling of classes
• A guideline of software development practice

is to maintain strong cohesion in a single class

and weak coupling among different classes

• Cohesion: All attributes and methods are

closely related to the concept implemented by

the class

• Coupling: Dependencies among different

classes. A class depends on another if it uses

instances of the other class. Two valid

dependencies are containment and inheritance

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 31

Accessors and mutators
• An accessor (getter) is a method that does

not modify data members

• Accessors are used to provide member

data values, or values computed from

them, to calling statements

• A mutator (setter) is a method that may

modify member data

• In the employees class, get_hours is an

accessor; set_name is a mutator

David Keil Computer Science II 3. Classes 7/15 32

Constructors initialize members
public class Employee

{

 public Employee()

 { name = new String();

 hours = 0; }

 public Employee(String nm,int hrs);

 { name = new String(nm);

 hours = hrs; }

 public void input();

 public void display();

 private String name;

 private int hours;

};

default
constructor

constructor

with

parameters

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 33

Constructors
• Take name of class; initialize data members

• Are called with new when instance

is declared

• Have no return value or type

• May take parameters

• May be overloaded; i.e., there may be one

constructor for each set of parameters the

programmer desires to be able to initialize
instances with

David Keil Computer Science II 3. Classes 7/15 34

Default constructors
• A default constructor assigns zero values

(0, 0.0, ‘\0’, “”, etc.) to fields of a new object

• A class with no declared constructor

automatically gets a default constructor

• Whereas methods are define with type (e.g.,

void if necessary), constructors have no type

• An attempt to define a constructor as void and

to use it produces a puzzling compiler error

• Use this to call the default constructor from

another constructor

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 35

Methods that return objects

• Methods that construct objects may return

references to objects that will disappear

when the method terminates

• To return a usable object, use clone

• Example, to return an Address:

 return (Address)address.clone();

David Keil Computer Science II 3. Classes 7/15 36

Shallow copying
(of an object containing an array of pointers)

public static void main()

{

 Phonebook list1,list2;

 list1.input();

 list2 = list1;

}
list1

entry

entry

size

sizelist2

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 37

Inner classes

• A class defined inside a method definition,

within another class, is called an inner class

• It is only accessible inside that “outer” class or

(if the inner class is declared within a method)

a method

• Methods of an inner class may access

variables of the surrounding class if they are

declared final

David Keil Computer Science II 3. Classes 7/15 38

• Are class names used only to

declare instances?

3. Code reuse and

class debugging

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 39

Subtopic objectives

3.3 Locate a fault in a

multi-method class†

David Keil Computer Science II 3. Classes 7/15 40

Code reuse
• Essential design consideration for large

programming projects

• Definition: Code reuse is writing code so as

to be useful in more than one context

• Examples:

– Writing methods that solve a broad

variety of instances of a common problem

– Writing classes that are usable by a wide

variety of client code

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 41

The Object class

• All classes inherit from the Object class the

methods clone, equals, toString (see topic 5)

• These methods are to be redefined by client

code to override default methods

• Parameters and return types may be Object

• Thus print accepts Object parameters and

as a result displays the value returned by

toString

David Keil Computer Science II 3. Classes 7/15 42

Comparisons using equals method

• Default value of equals: comparison of

addresses; not useful

• Class implementations should write equals

with object parameter; cast that parameter

to the class, then make comparisons of

field values

• May use instanceof operator, with object as

left parameter and class name as right

parameter; it returns false if object is null

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 43

Comparing objects

• = = returns true iff the two operands refer to

the same object – not necessarily whenever

the two objects have the same attribute values

• Strings should be compared using equals()

or compareTo() methods of the String class,

not ==, >, <

• Correct example, given

objects x, y:
if (x.equals(y))…

David Keil Computer Science II 3. Classes 7/15 44

The toString method

• Recommendation: write a toString

method for all classes

• Default value returned by toString:

internal numeric information that should

be overridden by class designer

• If a toString method exists for a class,

then for object p, println(p) will display

the object by implicitly calling p.toString

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 45

Class invariants

• Definition: an assertion about the state of

any instance that holds during the existence

of the instance

• Example: a minutes field always have a

value in (0, 60]

• Invariants may only be enforced using

encapsulation, because enabling client code

to change field values would expose them to

invariant violations

David Keil Computer Science II 3. Classes 7/15 46

Implicit and explicit parameters

• Every method call has an implicit

parameter: the object that calls the

method, e.g., System.out in
System.out.println(“Hello”);

• Explicit parameters are those listed

in parentheses

• The identifier this in a method

definition is a reference to the implicit-

parameter object

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 47

Class relationship: dependence

• A class C is dependent on another D if

C has a method that declares an

instance of D as a local variable

David Keil Computer Science II 3. Classes 7/15 48

Nested objects: containment

class Location { int x,y; };

class Circle

{

 Location loc;

 int radius;

};

• A class that has a member that is an

instance of another class is a container

Nested object

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 49

Class debugging and testing

• A well-designed class

– uses data hiding

– has methods that validate parameters

– enforces all class invariants

– handles all exceptions

• To test a class, write a driver program

that declares an instance and calls the

class’s methods

David Keil Computer Science II 3. Classes 7/15 50

• How does a well-written program

handle runtime errors, such as

–divide by zero,

–array boundary violations, and

–file read errors?

4. Exception handling

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 51

Subtopic objectives

3.4a Explain exception

handling*

3.4b Use exceptions†

David Keil Computer Science II 3. Classes 7/15 52

File input/output
• Input uses FileReader and Scanner classes:
FileReader fr = new FileReader(”x.txt”);

Scanner in = new Scanner(fr);

• Output uses PrintWriter:
PrintWriter out = new PrintWriter(”y.txt”);

• If input or output file cannot be opened,

a FileNotFoundException object will be thrown

• Methods that open files may be declared with throws

FileNotFoundException after method header -- this will

terminate method

• JFileChooser dialog enables user to navigate directory

to choose file

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 53

File exceptions
• Methods that open files should have throws

FileNotFoundException at end of header; called

method should handle exception

• Example:
try {

 FileReader fr = new FileReader(”x.txt”);

 Scanner in = new Scanner(fr);

 return Integer.ParseInt(in.next());

 }

catch(IOException exc) { … }

catch(NumberFormatException exc) { … }

catch(FileNotFoundException exc) { … }

catch(NoSuchElementException exc) { … }

David Keil Computer Science II 3. Classes 7/15 54

Why exception handling?

• With Java exceptions, error information can
travel directly, across method boundaries, to
where it is handled

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 55

Exception handling
• Purpose: to communicate information about

error situations to code that handles error

• Examples: Array, file-not-found errors

• The calling method, not the method that

detects exception, should handle it

• A catch response to an exception may be to

throw another to its method’s caller method

• With throw of exception, method terminates

and control proceeds where exception is caught

David Keil Computer Science II 3. Classes 7/15 56

Java try, throw, catch
• try: marks block where exception might occur

• throw: on error, passes control directly to

catch, throws a data item

• catch: marks block where a certain kind of

exception is handled; catches an item of a

particular type

• Program may define an exception class for

objects that are to be thrown and caught

• Uncaught exceptions terminate program

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 57

Throwing and catching exceptions
Public class math_errors

{

 char message[80];

 math_errors(String msg) {message = msg; };

};

void main()

{

 out.print("Enter two integers: ";

 int a = in.nextInt(), b = in.nextInt();

 try { out.println(quotient(a,b)); }

 catch (math_errors error)

 { out.println(error.get_message() + " undefined."; }

}

float quotient(int a,int b)

{

 if (b == 0) throw math_errors("Div by 0");

 return (float)a / b;

}

[div2.cpp]

Sample I/O:

Enter two integers: 2 0

a / b = Div by 0 undefined

Java?

David Keil Computer Science II 3. Classes 7/15 58

Guidelines for using exceptions

• Throw object; catch by class

• Exceptions may be re-thrown

• Relinquish all resources through

destructors; throw causes destructor call

• If you can resolve a problem in current

scope, do so rather than throw exception

• Every non-runtime (checked) exception

thrown is caught and handled

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 59

The finally clause

• Use finally clause after try block to

spefcify code that should execute

whether an exception is thrown or not

• Example:
try {

}

finally {

 in.close();

}

David Keil Computer Science II 3. Classes 7/15 60

Conventions with exceptions

• A method throws an exception if a

precondition is violated

• Commonly used exception types:

NullPointerException

ArrayIndexOutOfBoundsException

IllegalStateException

IllegalArgumentException

NoSuchElementException

1. Class design David Keil CS I I 7/15

David Keil Computer Science II 3. Classes 7/15 61

Cay Horstmann. Big Java, 3rd ed. Wiley,

2008, Ch. 3.

D. Keil. Defining and using methods.

Classroom handout.

D. Keil. Defining a class. Classroom

handout.

S. Reges and M. Stepp. Building Java

Programs. Pearson, 2014.

References

