
6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 1

David M. Keil, Framingham State University

CSCI 252 Computer Science II Using Java

6. Event-driven
GUIs and Java

graphics
1. Developing event-driven software

2. Graphical user interface construction

3. Java graphical tools

David Keil Computer Science II Using Java 6. Event-driven software 7/15 2

Inquiry

• What is a GUI?

• An event?

• How are windows, buttons, and

shapes drawn in Java?

• How can you draw lines and

shapes on the screen?

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 3

Topic objective

Explain event-driven GUI

development and use Java

graphics libraries

David Keil Computer Science II Using Java 6. Event-driven software 7/15 4

• What GUIs have you used?

• Can standard OS and application

interfaces be programmed using the

tools that we have studied so far?

1. Developing event-
driven software

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 5

Subtopic objectives

6.1a Explain event-driven

programming*

6.1b Write event-driven code†

David Keil Computer Science II Using Java 6. Event-driven software 7/15 6

Streams and interaction

• In an interaction stream, inputs and outputs

alternate

• A user-controlled I/O loop may never end

• The diagram below shows an interactive

computation

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 7

Event-driven programming

• An event is normally the user’s input

• Examples of events: keypress,

menu choice, mouse click

David Keil Computer Science II Using Java 6. Event-driven software 7/15 8

• Browsers and most other apps are interactive,

alternating input and output

• Command-line environments: URL line in

browser, Google prompt, DOS or UNIX prompt

• Features of graphical user interfaces: windows,

icons, menus, dialog boxes, buttons

• Common paradigm: User generates events, e.g.,

clicks, drags, keystrokes, timeouts

• Browser interacts via hyperlinks and via embed-

ding of event-handling JavaScript in HTML files

Event-driven design

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 9

Events in a GUI
• Event-driven programs use event handler code to

process events such as keypresses, mouse clicks,

menu choices, or passage of time

• Events are represented by objects

• Event-listener objects select relevant events out

of all events that are generated

• Event-source objects generate events selected by

event listeners

• HTML and JavaScript are used together to

respond to some events

David Keil Computer Science II Using Java 6. Event-driven software 7/15 10

Problem specifications

and user interfaces
• Designer must consider assumptions about

• Problem domain (e.g., business, education,

personal, healthcare)

• User needs and expectations

• Interface refers to how application (e.g., at web

site) appears and responds to user

• Most user interfaces today are graphical

• Implementation (coding) is partly independent

of interface

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 11

IBM’s user-interface principles
• Affinity: good

visual design

• Assistance: provide

proactive assistance

• Availability: all objects at

any time

• Encouragement:

predictable and reversible

• Familiarity: build on

user’s prior knowledge

• Obviousness: objects

visible and intuitive

• Personalization: user

customization of interface

• Safety: keep the user out

of trouble

• Satisfaction: user feeling

of achievement

• Simplicity: do not

compromise usability

• Support: place the user

in control

• Versatility: Support

alternate techniques.

David Keil Computer Science II Using Java 6. Event-driven software 7/15 12

JavaScript and HTML

• The JavaScript text between the HTML tags
<script language = “Javascript”> and

</script> will execute when browser displays

HTML file

• Motivation:

• Working with IT means thinking abstractly

and concretely about data and operations

• Design, coding, and testing of solutions are

part of learning problem solving

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 13

JavaScript example
<html> <!-– hello.htm -->

 <head><title>DK-Hello</title></head>

 <body>63.120 says Hello!

 <script language="JavaScript">

 alert("hello");

 </script>

 </body>

</html>

• Displays “hello” in an alert box (a kind of dialog)
•alert is a JavaScript function (a kind of procedure)

• JavaScript may be used after script tag

David Keil Computer Science II Using Java 6. Event-driven software 7/15 14

Button
<html> <!--button.htm-->

<head><title>63120 Hello</title></head>

<body>

 <input type=button value = "Hello"

 onClick = 'alert("Hi")'>

</body></html>

• This code displays “Hi” when “Hello” button
is pressed

• <input> tag defines an input button object

• Event handler: code that specifies application’s
response to a particular event, such as user click
on a button

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 15

Counting button clicks
<html> <head><title>yes-no counter</title></head> <body>

 /* count-yes.htm Displays Yes, No buttons for user to
click, counts # clicks on each. Event-handlers specify
response to input events: Yes, No, Stats, Reset.
Variable track yeses and nos. */

<script language="JavaScript">

 var num_yes=0, num_no=0; // Variables

</script>

 <td><input type=button value = "Yes"

 onClick = 'num_yes = num_yes + 1'></td>
 <td><input type=button value = "No"

 onClick = 'num_no = num_no + 1'></td>
 <td><input type=button value = "Stats"

 onClick = 'alert("Yes: "+num_yes + " No:"+num_no)'>
 </td>

 <td><input type=button value = "Reset"

 onClick = 'num_yes = num_no = 0'></td>
</body> </html>

David Keil Computer Science II Using Java 6. Event-driven software 7/15 16

Text input/output
<head><title>Input echo</title></head> <body>

 <form name="Input"><table>

 <!-- Display prompt and get input:-->

 <td>Enter your user name:

 <!-- Generate input-box:-->

 <input type=text name=user

 value="" size = 15> </td>

 <!-- At button-press, display message:-->

 <td><input type=button value="Done"

 onClick = 'alert("Hello " + user.value)‘>

 </td>

 <!-- Assigning a value to onClick defines

 JavaScript response to button click -->

 </table></form> </body>

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 17

Testing and debugging

• Software and web sites require testing

before deployment

• Testing is often done by quality

assurance departments

• All software writing entails errors and

debugging

• JavaScript is easy to test on a browser,

but the browser does not supply error

locations or other diagnostics

David Keil Computer Science II Using Java 6. Event-driven software 7/15 18

• What are elements of a graphical
user interface?

• How is a GUI built?

2. Graphical user
interface construction

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 19

Subtopic objectives

6.2a Describe elements of a

graphical user interface*

6.2b Implement a Java-based GUI†

David Keil Computer Science II Using Java 6. Event-driven software 7/15 20

Model-view-controller

architecture

Kind of class Example

Model Array of database records

 Spreadsheet cells in

linked-list grid

View Window

 Button

Controller Menu

 Instance of application class

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 21

Model, view, and
controller classes

David Keil Computer Science II Using Java 6. Event-driven software 7/15 22

Commercial software interfaces

• Use collections for storage

• Store data in disk files and support updating

of disk data

• Provide graphical user interfaces (GUIs)

with menus for user control

• Extensive design process with large

software development teams

• Extensive testing and validation

• Entail professional responsibilities

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 23

Application classes

• Used in Windows and Java programming

• A user-interface library defines a general-

purpose application class

• Application programmer defines a class

that inherits from library class, extends

its features

• Application programmer may focus on

special purpose of application rather than

on user-interface details

David Keil Computer Science II Using Java 6. Event-driven software 7/15 24

Buttons and labels

• First declare button objects and labels

(to identify the buttons):
JButton button = new Jbutton(”Hi”);

JLabel label = new JLabel(”Hi ”+x++);

• Then create panel containing buttons

• Then define class implementing ActiveListener

• Listener responds to button press

• See Background slides for how JavaScript

supports GUI objects in web pages

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 25

String I/O using GUI

• To show output string x in a

message dialog:
JOptionPane.showMessageDialog

 (null, x);

• To get input string s using dialog:
String s =

 JOptionPane.showInputDialog

 (”Enter name:”);

David Keil Computer Science II Using Java 6. Event-driven software 7/15 26

• A window is a rectangular view that is

displayed graphically

• Windows are used to display data,

including part of a document, graphic,

or file

• To enable user to interactively manage

what is displayed, controls such as

scrollers are part of window objects

Window classes

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 27

Microsoft Foundation Classes

inheritance hierarchy (partial)

David Keil Computer Science II Using Java 6. Event-driven software 7/15 28

• What shapes can you draw with the MS

Office drawing tools?

• With Paint?

• What is required to specify a line

segment on a coordinate axis? A circle?

A rectangle?

• Have you programmed with graphics?

3. Java graphical tools

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 29

Subtopic objectives

6.3a Describe Java graphics tools

6.3b Write a graphics application†

David Keil Computer Science II Using Java 6. Event-driven software 7/15 30

Bitmap and vector graphics
• A drawing may be rendered as a bitmap, pixel

by pixel, or as instructions (vector graphics)

• Bitmap file formats: TIFF, BMP, PNG

• Java graphics packages:

– java.awt: Active Windowing Toolkit

– java.io: input/output classes

• Graphics classes: Font, Graphics, Picture,

graphicsEnvironment, Color, Graphics2D,

Line2D, FontMetrics, Pixel

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 31

• Packages: javax.swing, java.awt

• To create graphics window, declare JFrame
object (example: Emptyframeviewer.java)

• To display an object, declare an instance
(example: Rectangle) and call draw method

• Alternative: declare class to inherit from
JComponent, add to frame, and call

paint method

Java graphics tools

David Keil Computer Science II Using Java 6. Event-driven software 7/15 32

Frames in Java

• Specialized frame classes extend

predefined JFrame (from Swing package)

• Specialized event listeners implement

ActionListener interface

• JTextField components support user text

input, labeled by JLabel objects

• JScrollpane objects may contain multi-

line JTextArea objects

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 33

Drawing a bitmap

• A drawing may be done with getPixel and setColor

• To draw a red diagonal line segment:
Pixel px = null;

int y = 0;

Picture pic = new Picture();

pic.show();

for (int x = 10; x < this.getHeight–10; x++)

{

 px = this.getPixel(x,y);

 y = 0.6 * x;

 px.setColor(Color.red);

}

pic.repaint();

David Keil Computer Science II Using Java 6. Event-driven software 7/15 34

Creating colors in Java

• Instances of Color class may be assigned as

values of Pixel objects

• Color objects have three components:

shades of red, green, and blue, each in the

range 0..255

• Color(0,0,0) is the constant value

Color.black; Color(255,255,255) is

Color.white

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 35

Vector graphics representation

• Vector is as opposed to bitmap

• Whereas bitmaps store a representation of

each pixel, vector representations store a

description with instructions on how to

draw object

• Example: a line segment or rectangle may be

represented by four ints

• Vector representations have advantages:

more easily edited, shorter

• File formats: Illustrator, XML, SVG, CDR

David Keil Computer Science II Using Java 6. Event-driven software 7/15 36

Java drawing methods

• drawLine(x1, y1, x2, y2) draws a line segment

from location (x1, y1) to (x2, y2) in color set

by setColor()

• Other shape outline drawing methods: drawRect,

drawOval, drawArc, each with parameters x, y, w, h

• drawArc also has startAngle, arcAngle parms

• Methods to draw filled shapes: fillRect,

fillOval, fillArc

• drawPolygon, fillPolygon have parameters xArray,

yArray, and numPoints

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 37

The java.awt.Graphics2D class

• A class derived from Graphics

• Features not possessed by Graphics methods:

– Each shape is an object

– Set brush width

– Enable broken lines

– Rotate, translate, scale, shear

– Gradient or textured fill

– Control of effect of overlapping

– Clipping

– Curve smoothing

David Keil Computer Science II Using Java 6. Event-driven software 7/15 38

Drawing text

• Method (from java.awt.Graphics):

drawString(String s, int x, int y), where x, y

specify leftmost point and vertical baseline

of string

• Font and color are as previously set by

setFont, setColor

• Font class has name, style, size attributes

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 39

A collection of graphical objects
• Concept: an expandable collection of descriptions

of shapes or other objects, of different classes,

each of which calls a draw method

• Java features used: inheritance, polymorphism

• Implementation:

– Linked list of references to objects of base

class, e.g., Shape

– Each object is of a derived class, e.g.

Rectangle, Triangle, Arrow, Oval

– Draw is a virtual method defined only in the

base-class definitions

David Keil Computer Science II Using Java 6. Event-driven software 7/15 40

A collection of Shape
objects of mixed classes

• Array of pointers to base class:

Shape[] item = new Shape[];

• Each pointer points to a dynamically allocated
object of a derived class

• All derived classes are derived from Shape

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 41

Shapes, dots, and lines
class Shape {

 public Shape() {};

 public void set_x(int x) { x_origin = x; };

 public int get_x() { return x_origin; }

 public virtual void draw() = 0;

 int x_origin;

};

class Dot extends Shape {

 public Dot(int x) { set_x(x); }

 virtual void draw() { out.printf("X“); }

};

class Horiz_line extends Shape {

 public Horiz_line(int x, int len)

 { set_x(x); length = len; }

 public virtual void draw();

 int length;

};

Abstract base class

Pure virtual method

(can’t be called)

Derived classes

[shapes.cpp]

David Keil Computer Science II Using Java 6. Event-driven software 7/15 42

Drawing a mixed set of objects
void main()

{
 Shape item[] = new Shape[]

 {

 new horiz_lines(3,10),

 new dots(4),

 new dots(5),

 new horiz_lines(6,20),

 };

 // Loop to draw each item:

 for (int i=0; i < (sizeof item) / 4; ++i)
 item[i].draw();

}

Polymorphic method

call(which draw method

is called is determined

at runtime)

[shapes.cpp]

An array of

references

to objects of different

classes, all derived

from Shape

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 43

Abstract base classes (C++)
• An abstract base class is intended for use

with polymorphism

• It cannot be instantiated

• A virtual member function with a null body makes

a class abstract:

 virtual void draw() = 0;

• Such a function is called a pure virtual function

• No-instantiation rule safety-protects abstract base

classes (e.g., how is an undefined shape drawn?)

David Keil Computer Science II Using Java 6. Event-driven software 7/15 44

A C++ base-class run function
void applications::run()

// Executes event loop, terminates on "Q" for Quit.

{

 init_prompt();

 init_menu();

 events event;

 char event_text;

 do

 {

 display_prompt();

 menu.draw();

 event.fetch();

 event_text = toupper(event.get_text());

 if (event_text != 'Q')

 handle_event(event);

 }

 while (event_text != 'Q');

}

Virtual functions defined

in derived class

Virtual event handler

gives control of response

to derived class in app

Base class defines response

to Quit input or other event

defined by interface

[winfrmwk.cpp]

6. GUIs David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 6. Event-driven software 7/15 45

A derived

application

class

in C++

class calculators : public applications {

public:

 calculators() { };

 virtual void init_prompt()

 { set_prompt("Choose an operation"); };

 virtual void init_menu()

 { menu.set("+ Add","Q Quit",""); };

 virtual void handle_event(events event) {

 switch(event.get_text()) {

 case '+':

 out.print("Enter 2 integers: “);

 int input_1 = in.nextInt(),

 input_2 = in.nextInt();

 out.print(“”+input_1 + " + " + input_2 +

 " = " + (input_1 + input_2); break;

 }

 }

};

void main()

{ calculators calc; calc.run(); }

[wincalc.cpp]

Virtual event

handler

Base-class run method

executes event loop, calling

virtual methods as defined in

derived class

See

"winfrmwk.cpp"

David Keil Computer Science II Using Java 6. Event-driven software 7/15 46

References

Cay Horstmann. Big Java, 3rd Ed. Wiley, 2007.

Mark Guzdial, Barbara Ericson. Introduction to

Computing and Programming with Java.

Pearson Prentice Hall, 2007.

