
5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 1

David M. Keil, Framingham State University

CSCI 252 Computer Science II Using Java

5. Inheritance and
polymorphism

1. Inheritance in object-oriented design

2. Inheritance in Java

3. Interface types

4. Polymorphism

David Keil Computer Science II Using Java 5. Inheritance 7/15 2

Inquiry

• Does object-oriented design have

a class concept analogous to

module hierarchies?

• What is a taxonomy?

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 3

Topic objective

Explain and implement the

notions of an inheritance

hierarchy and of

polymorphic behavior

David Keil Computer Science II Using Java 5. Inheritance 7/15 4

1. Object-oriented design

and inheritance

• What are some relationships

among concepts?

• What distinguishes is-a from has-a?

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 5

Subtopic objective

5.1a Explain inheritance*

David Keil Computer Science II Using Java 5. Inheritance 7/15 6

Extending classes with inheritance

• The concept “car” is a kind of vehicle in

that all cars have the features of vehicles

• Cars extend the concept of vehicles, or

inherit the features of vehicles; e.g., to

move, steer, stop, transport cargo

• Java classes may inherit similarly,

including inheriting behaviors or

operations (as methods)

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 7

A taxonomy uses inheritance

• Example: a tree is a kind of plant

David Keil Computer Science II Using Java 5. Inheritance 7/15 8

Numeric subclasses
Numbers
 A. Reals
 1. Transcendentals
 2. Rationals
 a. Integers
 b. Fractions
 B. Imginaries

These three

notations for
inheritance are
equivalent

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 9

Object-oriented
design and inheritance

• A class that embodies a concept that
is a subcategory of some other
concept may inherit from the class
that represents that other concept

• The is-a or kind-of relationship is an
inheritance relationship

David Keil Computer Science II Using Java 5. Inheritance 7/15 10

Base and derived classes
• Derived class inherits members from

base class

• Base class encapsulates a more

general category

• Derived class = subclass = descendant

• Base class = superclass = ancestor

• Derived classes are sometimes

called subclasses

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 11

A base class may...
• have multiple derived classes

• be a derived class too

• have no instances

(abstract base class)

David Keil Computer Science II Using Java 5. Inheritance 7/15 12

Base and derived class

member names

• Duplicate member identifiers

in a derived class override

base-class member identifier

• To access base-class identifiers,

use super with dot

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 13

Refactoring

• Definition: modifying program

implementation without modifying

behavior

• Purpose: improve performance,

readability, maintainability, simplicity

David Keil Computer Science II Using Java 5. Inheritance 7/15 14

• How may a Java program use an

attribute of an object to select

among behaviors?

2. Inheritance in Java

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 15

Subtopic objectives

5.1b Design an inheritance hierarchy*

5.1c Explain issues raised by inheritance

5.2a Define and use a derived class*†

5.2b Predict behavior of derived-class

objects

David Keil Computer Science II Using Java 5. Inheritance 7/15 16

Inheritance in Java
• Classes may have kind-of relationships by use

of extends keyword:
class Hourly extends Employee

• Above, Hourly is a subclass, Employee is a

superclass, Hourly automatically inherits all

members of Employee

• Object is a superclass of all other classes

• Object methods include clone(),

toString(), equals()

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 17

Inheritance replaces switch logic
• Without inheritance, each employee would

have extra data members and a flag:
enum pay_category {HOURLY, SALARIED};

public class Employee {

 int ID, pay_category;

 double salary, hours, rate;

};

• A loop would calculate weekly pay for an
employee using switch:
switch(pay_category)

{

 HOURLY: pay = hours * rate; break;

 SALARIED: pay = salary / 52; break;

};

David Keil Computer Science II Using Java 5. Inheritance 7/15 18

Overriding

• A method of a derived class overrides a

method of the same name in the base class

• Example:

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 19

An Employee example

• Problem: to calculate paychecks

for an employee roster that

includes salaried and

hourly employees

• Some employees have a salary

• Others have an hourly wage rate

and an hours worked value

David Keil Computer Science II Using Java 5. Inheritance 7/15 20

Inheritance with employee classes

class Employee

{

 Employee(int I) { ID = I; };

 private int ID;

};

class Hourly extends Employee

{

 hourly(int I, double W, double H);

 private double wage_rate, hours;

};

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 21

Base-class constructor runs first
class Game

{

 public Game() { out.print(“Games“); }

};

class BoardGame extends Game

{

 public BoardGame()

 { super(); out.println(“BoardGames“); };

public static void main(String[] args)

{

 BoardGame g = new BoardGame();

}

Output:
games

board_games

David Keil Computer Science II Using Java 5. Inheritance 7/15 22

Inheritance example

• Instances of subclasses of classes with

automatic display methods inherit the

auto-display behavior

• For example, a program may extend the

JComponent class for graphical objects

displayed in frames

• An instance of JComponent

automatically displays itself when the

frame is resized or moved

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 23

Derived classes and encapsulation

• Derived classes don’t have access to

private fields and methods of base classes

• Derived-class constructors’ first

statement must be a call to base-class

constructor, using super, to initialize

base-class fields

David Keil Computer Science II Using Java 5. Inheritance 7/15 24

Multiple inheritance
• Some concepts may have more than one

is-a relationship

• teaching assessments are both student and

employees

• birds are both walkers and fliers

• The diamond inheritance problem:

age member name

is ambiguous

• Solution: not multiple

inheritance, but interface types

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 25

• Is a type name ever impossible

to instantiate?

3. Interface types

David Keil Computer Science II Using Java 5. Inheritance 7/15 26

Subtopic objective

5.3 Test an interface type†

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 27

Interface types (classes)

• A kind of overloading that supports reusability of

code via the is-a relationship

• Implemented using the interface keyword

• All methods of an interface class are abstract and

public, with signatures but not definitions

• All methods are public but undefined (abstract)

• Interface types lack data members (fields)

• To implement an interface class, declare a class

that uses it and that defines its abstract methods

David Keil Computer Science II Using Java 5. Inheritance 7/15 28

Interface-class example
public interface Comparable
{
 boolean is_greater_than(Comparable x);
}
public Batter implements Comparable
{
 private double batAvg;
 public boolean is_greater_than(Batter x)
 {
 return (bat_avg > x.get_bat_avg());
 }
}

• This shows how the Comparable interface

expresses the commonality among classes like

Batter, Integer, String, etc. – all can be compared

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 29

Interface types
• Interfaces specify methods for classes but

not implementations (data members or

method definitions)

• Example: an interface for collections of

measurable objects may have sort and

average methods

• All methods are public by definition; public

is not specified; no constructor

• An interface is implemented by a class but

may not be instantiated

David Keil Computer Science II Using Java 5. Inheritance 7/15 30

Interface example
• Public interface Quantifiable

{ double getQuantity(); }

• Implementation must define getQuantity

• Example that uses Quantifiable:
public static double

sum(Quantifiable[] A)

{

 double sum = 0;

 for(int i = 0; i < A.length; i++)

 sum += A[i].getQuantity();

 return sum;

}

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 31

A Shape interface

• An interface type, rather than inheritance, may

be appropriate because shape-related methods

don’t share code

• Methods: getArea, getPerimeter

• Example code:
Shape[] s = new Shape[5];

s[0] = new Circle(5);

s[0] = new Triangle(10,10,10);

s[0] = new Square(16);

for (int i = 0; i < s.length; i++) …

David Keil Computer Science II Using Java 5. Inheritance 7/15 32

Java class library interfaces

• ActionListener (java.awt)

• Serializable (java.io)

• Comparable (>, <, ==)

• Formattable (printf)

• Runnable (multithreading)

• Collection interfaces: List, Set, Map, Iterator

(java.util)

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 33

Extending an interface

• Interfaces can be reused, like base classes, by

using the keyword extends

• Example: a List<E> interface may extend the

Iterable<E> one

David Keil Computer Science II Using Java 5. Inheritance 7/15 34

• How does an outdoor painter decide

what to do when asked to “paint 15 Oak

St.”, which might be a home or a

commercial building?

• How does a GUI know what to do when

paint() is called by a Window object?

4. Polymorphism

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 35

Subtopic objectives

5.4a Explain polymorphism

5.4b Implement polymorphism†

David Keil Computer Science II Using Java 5. Inheritance 7/15 36

Overloaded methods and
operators are polymorphic
• Meaning of a method name like sum may

depend on data types of the operands used

• Compiler chooses which overloaded

function to call, based on parameter types

• This is a weak form of polymorphism

• With late binding, the compiler does not

know the parameter types

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 37

Polymorphism
• When different classes implement the same

interface, the different implementations

reflect polymorphism

• Example: Different graphical objects are drawn

in different ways, but all may use the same name

paint to be drawn, where paint is a method of an

interface class

• Polymorphism allows us to declare a collection

of objects of heterogeneous types and draw all

of them using the same method name paint

David Keil Computer Science II Using Java 5. Inheritance 7/15 38

Polymorphism:

• The feature by which objects of different

classes in an inheritance hierarchy may

respond differently to calls to methods of

the same name

• It includes the ability of a base-class

method to call a derived-class method

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 39

Polymorphism uses inheritance

• Application programmer who uses

application-class library writes a derived

class that redefines the base-class

event handler

• Elements of a list of base-class

references may point to object of

different derived classes

• Example: processing a mixed payroll of

hourly and salaried employees

David Keil Computer Science II Using Java 5. Inheritance 7/15 40

When does the compiler not know

the class of an object?
• When base-class pointer is used:

p_shape->draw();

• When a base-class function calls a

derived-class function

Polymorphism is useful with:

• Heterogeneous collections of objects of

different derived classes

• Application frameworks, in which base-

class run calls derived-class event handlers

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 41

Derived-class methods may
override base-class ones

class Animal

{

 public Animal() { };

 public void tellMotion()

 {out.println("Animals move around.“);};

}

class Bird extends Animal

{

 public Bird() { super(); };

 public void tellMotion()

 { out.println("Birds move on two legs and wings“); };

};

public static void main(String[] args)

{

 Bird b = new Bird();

 b.tellMotion();

}

Output:

Birds move on two legs and wings

Derived-class

method is called

David Keil Computer Science II Using Java 5. Inheritance 7/15 42

switch logic vs. polymorphism
• Workaday example: A lawnmower shop takes

different fix-it jobs. What to do depends on nature

of the problem.

• Two approaches to a solution:

 1. Write one repair plan using logic like switch

 2. For each category of repair job, write a

 repair plan

• Advantage of #2: Shop may change its

capabilities without altering main loop -- just

define new classes and repair plans

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 43

Base-class methods may call methods
of an abstract derived class

David Keil Computer Science II Using Java 5. Inheritance 7/15 44

Late binding

• Definition: Determination of the

call address of a method call by

lookup at run time, rather than at

compile time.

• Advantage: Allows polymorphic

behavior because which method is

called will depend on the class of

the calling object.

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 45

Abstract base classes
• An abstract base class is intended for use

with polymorphism

• An abstract class cannot be instantiated

• An abstract base class are

designated abstract

• Any declared but undefined methods are

designated abstract

• Base-class methods may be called

using “super.”

David Keil Computer Science II Using Java 5. Inheritance 7/15 46

A mixed collection of shapes
class Shape

{

 private extent;

 public void draw() {}

}

class Line extends Shape

{ … }

class Square extends Shape

{ … }

[main:]

Shape[] A = {new Line(), new Square()};

5. Inheritance David Keil Computer Science II 7/15

David Keil Computer Science II Using Java 5. Inheritance 7/15 47

A set of integers and
sets of integers

{ 1, 2, { }, {1}, {2}, {1,2} }

David Keil Computer Science II Using Java 5. Inheritance 7/15 48

References

Cay Horstmann. Big Java, 3rd ed. Wiley,

2008. Ch. 9, 18.

S. Reges and M. Stepp. Building Java

Programs. Pearson, 2014. Ch. 9

