
1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 1

David M. Keil, Framingham State University

CSCI 252 Computer Science II Using Java

1. Procedural abstraction and Java methods

2. Local variables, parameters, return values

3. Documenting and testing methods

4. Recursive methods

5. Java file I/O

1. Java method
design

David Keil Computer Science II 1. Methods 7/15 2

Inquiry
• How may we represent things, people,

places, and events?

• What is a procedure?

• How does a software developer step

back from the details of data items and

computational steps?

• What is abstraction?

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 3

Topic objective

Define and test Java static

methods with parameters and

return values.

David Keil Computer Science II 1. Methods 7/15 4

• Did you ever see program code that

went on for pages?

• How may the steps of a program be

subdivided for modularity?

• What is a subprogram?

• How is println implemented?

1. Procedural abstraction

and Java methods

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 5

Subtopic objectives

1.0 Recall basic Java method

concepts*m

1.1a Explain procedural

abstraction**

1.1b Define, test a Java method**†

David Keil Computer Science II 1. Methods 7/15 6

Procedural abstraction

• Definition: the creation of subprograms

• Statements and control structures are

packaged as named modules

• The statements are replaced by calls to

the subprograms

• Procedural abstraction enables modularity

and reuse of code

• Defining data types, is called data

abstraction, part of object-oriented design

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 7

• Some solutions are too complex to be easily
understood as a single unit

• A structured design

can be decomposed

into simpler modules

• This breaking down is called modular

decomposition, implemented by procedural

abstraction (writing of subprograms)

• We may continue the breakdown as needed by
stepwise refinement

Modular decomposition

David Keil Computer Science II 1. Methods 7/15 8

Example of modular decomposition

Separate modules are easier to understand.

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 9

Module hierarchy diagrams
• Example: Main invokes Input, Calculate, and

Output; Calculate calls Assign and Multiply

• A module hierarchy chart shows module

dependencies, whereas a flowchart shows
order of execution.

Main

A. Input

B. Calculate

 1. Assign

 2. Multiply

C. Output

David Keil Computer Science II 1. Methods 7/15 10

• In Java, subprograms are called “methods”

• These are not general ways of doing things,

but specific sequences of commands

• All Java methods are members of classes

• Every program defines at least one class with

a special method, main, that executes when

the program executes

• Other methods may be defined and may be

called from main

Java methods

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 11

Writing and calling Java methods

Example: Drawing a rectangle
public static void
main(String[] args)

{
 horizontal();
 vertical();
 vertical();
 horizontal();
}

private static void horizontal()
{ out.println(”*******”); }

private static void vertical()
{ out.println(”* *”); }

method

defini-

tions

method

calls

* *
* *

David Keil Computer Science II 1. Methods 7/15 12

Methods in the Java language
• A method call statement invokes the method

and may pass parameters to it in parentheses

• Many method calls follow an object or class
name, and a dot, as a message to the object

• A method definition spells out the method’s

executable code and declares local variables

• A method definition has

• a header (access specifier; type; method
ID; parameters in parentheses) and

• a body (block or compound statement)

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 13

Java static methods

• Definition: a method that is not called by a

message to an object

• Examples: sum, above

• Static methods don’t access fields of

their classes

• The Math class is a utility that has static

methods that implement functions

David Keil Computer Science II 1. Methods 7/15 14

Static method example

public class HelloApp
{
 static void hello()
 {
 System.out.println(“Hello”);
 }

 public static void
 main(String[] args)

 {
 hello();

 }
}

method

definitions

method call

Class name, part

of class definition

Some Java code in these slides not yet tested

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 15

Method design

• Goal: cohesion; give any method a single

clear responsibility

• Goal: weak coupling – make methods

independent of each other

• main should briefly outline the

entire program

• Let a method handle data at the lowest

possible level or scope

David Keil Computer Science II 1. Methods 7/15 16

• How do methods communicate?

2. Local variables,

parameters, and

return values

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 17

Subtopic objectives

1.2a Explain method signatures

and scope*

1.2b Write a method with parameters

and return values**

1.2c Debug a method†

David Keil Computer Science II 1. Methods 7/15 18

A method’s ways
to communicate

• A parameter is a value passed to a method by

the method’s call

• A return value is passed from a method to the

statement that calls it

• A method signature specifies the names and

types of parameters, and type of return value

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 19

Local variables

int quantity = 2;

public static

void add()

{

 int sum = 2 * quantity;

 out.println("sum = " + sum);

}

Local variable: accessible

only in this method

Class member (instance

variable): accessible to
all methods in class

A local variable declared inside a

method is inaccessible from outside

David Keil Computer Science II 1. Methods 7/15 20

Local variables and scope of access

• A variable declared within a compound
statement is usable only there.

• When a method is called, an activation
record for the call, containing local
variables, is placed on top of the stack.

• When the method terminates, the stack is
popped and local variables are deallocated.

• Two activation records:

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 21

Parameters: example
public static void main()
{
 out.print(“2 + 5 = “);
display_sum(2,5);

}

private static
void display_sum(int a, int b)

{
 out.print(a + b);
}

Actual parameters

Formal parameters Output:
2 + 5 = 7

David Keil Computer Science II 1. Methods 7/15 22

A return statement passes a value
back to the calling method

• The return keyword precedes the returned value
in the called method

• The return value’s type must be type compatible

with the method’s type, declared in header

• The return statement terminates the method call

• The returned value goes on the stack

for retrieval by the calling method

• The method call is an expression whose value is

the value returned

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 23

Passing objects as parameters

• Primitive type items are passed by value

• Objects are passed by reference; i.e., the

address of the object is passed

• Hence a method may change the state of
an object

• Example:
void capitalize(String s)

{

 s = s.charAt(0) + s.substring(1);

} // changes s

David Keil Computer Science II 1. Methods 7/15 24

A method’s ways
to communicate

• A parameter is a value passed to a method

by the method’s call

• A return value is passed from a method to

the statement that calls it

• A local variable declared inside a method

is inaccessible from outside

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 25

Memory allocation for local variables
public static
void main()

{
 int a = 2;
 write(5);
}

public static
void
 write(int b)
{
 out.print(b);
}

This method

call pushes
an activation

frame onto
stack

When

method
terminates,

activation
frame is

popped
from stack

Stack pointer

points here,

to top of stack

David Keil Computer Science II 1. Methods 7/15 26

How local data is stored

• The stack stores parameters and local

variables in activation records

• Each call to a method is recorded as an

activation record

• When the method terminates, the

activation record is popped from

the stack; all local data disappears

from memory

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 27

Activation records in memory
• Each function call, at run time, causes an

activation record to be pushed on top of
the stack

• When the function terminates, the activation
record is popped and its memory is released

• Activation records contain local variables
and function parameters

• A return statement pushes the return value
on the stack after activation record is popped

David Keil Computer Science II 1. Methods 7/15 28

Scope of access for variables

• A variable declared within a compound
statement is usable only there

• When a method is called, an activation
record for the call, containing local
variables, is placed on top of the stack

• When the method terminates, the stack is
popped and local variables are deallocated

• Two activation records:

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 29

Parameters: example
public static void main()
{
 out.print(“2 + 5 = “);
display_sum(2,5);

}

public static
void display_sum(int a, int b)

{
 out.print(a + b);
}

Actual parameters

Formal parameters Output:
2 + 5 = 7

David Keil Computer Science II 1. Methods 7/15 30

Parameters
• A way for the calling method to pass data of

any types and quantity to the called method

• Value of actual parameter in method call is

copied to the formal parameter declared in

called method’s definition

• Parameter is local; is deallocated when

method terminates

• Method definition must specify parameter

names and types

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 31

Parameters act like local variables
public static void display_sum(int a, int b)

// Displays (a + b)

{

 out.print(a + “+” + b + “=“);

 while (b-- > 0)

 a++;

 out.print(a);

}

public static void main()

{

 int a= in.nextInt(), b= in.nextInt();

 out.print(“Enter two numbers”);

 display_sum(a, b);

 display_sum(6, 3);

}

David Keil Computer Science II 1. Methods 7/15 32

Return values: example
public static void

main(String[] args)

{

 int age = input_age();

 out.print(“You are “ +

 age + “ years old”);

}

private static int

input_age()

{

 out.print(“Your age? “);

 return in.nextInt();

}

The value

returned by

a method is

the value

used in the

return

statement in

the method

definition.

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 33

A return statement passes a value
back to the calling method

• The return keyword precedes the returned value
in the called method

• The return value’s type must be type compatible

with the method’s type, declared in header

• The return statement terminates the method call

• The returned value goes on the stack

for retrieval by the calling method

• The method call is an expression whose value is

the value returned

David Keil Computer Science II 1. Methods 7/15 34

sum with return value
public static void main()

{

 out.print(“Enter past and current: “);

 int past_due=in.nextInt(),

 current=in.nextInt();

 out.print(“You owe “

 + sum(past_due, current));

}

public static int sum(int a, int b)

{

 return a + b;

}

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 35

Overloading
• More than one Java method may have the same

name, if number or types of parameters differ

• Examples:

public static int sum(int a, int b)
{
 return (a + b);
}

public static int
sum(int a, int b, int c)
{
 return (a + b + c);
}

David Keil Computer Science II 1. Methods 7/15 36

Parameter and return-value types

public static double sum
 (double a, double b)
{
 return (a + b);
}

public static boolean is_even(int n)
{
 return (n % 2 == 0);
}

public static char nth_ch(String s, int n)

{
 return s.charAt(n);
}

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 37

Objects are passed

by reference
• The name of an object is actually a reference,

which is the RAM address of the object

• Whereas the state of a primitive-type

parameter is not changed by a method, a field

of an object parameter may be changed

• To return objects, return a copy using clone

• If a null reference is passed as a parameter, a

NullPointerException is thrown

David Keil Computer Science II 1. Methods 7/15 38

Reference parameter example
public static void main(String[] args)

{

 FileReader reader =

 new FileReader(”x.txt”);

 Scanner in = new Scanner(reader);

 int x1 = readFile(in);

}

public static int readFile(Scanner sc)

// This method advances the file

// scanner object to next file position

{

 return sc.nextInt();
}

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 39

Objects used as parameters

are mutable
• Point p = new Point(1, 2);

…

public static void zero(Point p)

{

 p.set(0,0); // changes state of p

}

• This principle applies to arrays as well as

single objects

• Exception: String

David Keil Computer Science II 1. Methods 7/15 40

Methods return objects

as references
• A string that is created by a method is

deallocated when the method terminates

• Therefore if such a string is to be returned, we

use the clone method to return a copy of it:
 String s = ”foo”;

 return s.clone();

• The same applies to all objects created

by methods

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 41

Variable-length parameter lists

(implicit array parameters)

• The parameter declaration int … x creates an

array at runtime
• int sum(int . . . x)

{

 int y = 0;

 for (int i = 0; i < x.length; i++)

 {

 y += x[i];

 }

 return y;

}

David Keil Computer Science II 1. Methods 7/15 42

Parameters to main
• May be passed from command line

• args: an array of strings

• the first command-line argument

• Applications: file names, switches

public static void main(String[] args)

{

 for (int i=0; i < args.length; ++i)

 out.print(args[i] + “ “);

}

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 43

• What was said in Intro to

Programming about

documenting and testing?

3. Documenting and

testing methods

David Keil Computer Science II 1. Methods 7/15 44

Subtopic objectives

1.3 Explain method

documentation and testing*

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 45

Suggestions for
writing methods

• A method has a single purpose

• Its purpose is documented in a comment at

the top

• Code longer than a page is usually broken

down into method definitions

• Experienced programmers avoid side

effects on variables declared outside

the method

David Keil Computer Science II 1. Methods 7/15 46

Using Javadoc

• This JDK tool reads a Java source file and

creates an HTML documentation file using

comments from the Java file

• It uses comments such as /** @param … */

or /** @return… */ to include parameter or

return value documentation in the HTML

file, where “…” is the programmer’s

description of the parameter or return value

• See the Javadoc tutorial online

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 47

Stubs test a top-down design
A stub method simply reports that it has been called

public static void main(String[] args)

{

 char option;

 do {

 out.print("1 Add\n 2 Sub\n 3 Quit“);

 option=in.nextChar();

 switch (option) {

 case '1': add(); break;

 case '2': subtract(); break;

 }

 } while (option != ‘3');

} // [see stub.cpp]

Calls to stub

methods

David Keil Computer Science II 1. Methods 7/15 48

Stub method definitions
public static void add()

{

 out.print("Calling ‘add’“);

}

public static void subtract()

{

 out.print("Calling ‘subtract’”);

}

• Stubs are called by driver programs while

being tested

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 49

Driver programs test methods
The driver below tests sum:

public static void main()

{

 int x1 = in.nextInt(),

 x2 = in.nextInt();

 out.print(“x1 + x2 = “ + sum(x1, x2));

}

public static int sum(int a, int b)

{

 return a + b;

}

David Keil Computer Science II 1. Methods 7/15 50

Checking validity of data

• Input validation may enforce reasonable types

or ranges of values

• Examples: Whole-number quantities; age

between 0 and 120

• User-friendly input handling should allow user

to re-enter input in case of error

• Similar checks should enforce method

preconditions

• Methods may throw exceptions in cases like

illegal argument or null pointer

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 51

Assertions and preconditions
• Precondition: a logical assertion about a value that

must hold if code is to be able to do its job

• The assert statement throws an exception if its

parameter is false; if a parameter is invalid, throw

an IllegalArgumentException

• when testing program x use java –ea x to enable

assertion testing

• Example:
public double tax(int income)

 throws IllegalArgumentException

{

 assert (income >= 0);

 …

David Keil Computer Science II 1. Methods 7/15 52

Debuggers and debugging

• Enable programmer to understand bugs by

comparing variable values with what correct

values are known to be

• Tools provided: breakpoints, single stepping,

inspecting variables

• Available with BlueJ, JDK, Eclipse

• Standalone program JZSwat:

code.google.com/p/jswat

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 53

Group exercise

Suppose you are to write an application around

a menu with items delete, replace, find, insert

1. Give a module-hierarchy diagram of three

levels (you will have to invent at least one

reasonable module)

2. Document using Javaddocs tags

3. Write stubs and a driver for this program or

module; test

David Keil Computer Science II 1. Methods 7/15 54

• What’s induction?

• What’s recursion?

• Have you discussed these in

Precalc or CS I?

• Can a method call itself ?

4. Recursive methods

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 55

Subtopic objectives

1.4 Derive a recursive method from

a loop

David Keil Computer Science II 1. Methods 7/15 56

A recursive factorial method
public static int factorial(int n)
{
 if (n <= 1)
 return 1;
 else
 return n * factorial(n - 1);
}

Recursive call

Base case

A recursive method
(a) provides a direct solution for a

simple base case, or

(b) calls itself to solve a simpler

version of the problem it solves

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 57

Factorial with while

• The iterative loop here is equivalent to the

recursive one on the previous slide

public static int factorial(int n)

{

 int i = 1, y = 1;

 while (i <= n)

 y = y * i;

 return y;

}

David Keil Computer Science II 1. Methods 7/15 58

Recursion implements a loop
public static int input_age()

// Prompts for, returns age,

// repeats until gets valid input.

{

 out.print(“Age? “);

 int age = in.nextInt();

 if (age >= 0) return age;

 else return input_age();

}

• A method that calls itself is recursive

• A base case (as, age >= 0) triggers a simple

result; a recursive case triggers a recursive call

• Base case enables eventual termination

Recursive method call

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 59

Integer to string conversion

Problem: design a method that converts an integer

to a string

public static String toString(int n)
{
 if (n < 10)
 return ”” + char((int)’0’ + n);
 else
 return toString(n/10) +
 char(’0’ + (n % 10));
}

• [To be tested]

David Keil Computer Science II 1. Methods 7/15 60

How recursion uses the stack
public static void main()

{

 backwards();

}

public static void backwards()

{

 char ch = in.nextChar();

 if (ch != '\n')

 backwards();

 out.print(ch);

}

Sample I/O:
Hello

olleH

Question:

How can one

char variable

store the

whole string?

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 61

Recursive definition:
natural numbers

1. 0 is a natural number

2. Every natural number n has a unique

successor, n, which is a natural number
3. All natural numbers follow (1) or (2)

• Significance: These assumptions give a logical
basis to work with counting numbers.

• Computation is a formal way to manipulate
numbers and objects represented by them.

*1. 0N; 2. (nN) n N; 3. (nN) n = 0 (mN) n = m

David Keil Computer Science II 1. Methods 7/15 62

Recursive definitions

of math operations
• 1 is shorthand for 0 (successor of 0),

2 for 0, etc.; n is predecessor of n

• (a + b) is shorthand for sum(a, b) =

 a if b = 0

 sum(a, pred(b)) otherwise

• Given the successor function, the addition

function is computable using a loop

• Significance: Any finite repetitive process

can be specified by inductive methods.

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 63

A recursive method to add

public static int sum(int a, int b)

// Returns a + b. Recursive.

{

 if (a = = 0)

 return b;

 else

 return sum(a-1, b+1);

}

sum(a,b) = b if a = 0

 sum(a-1, b+1) otherwise

David Keil Computer Science II 1. Methods 7/15 64

Example: (Sigma, summation)
• The summation operator lets us add a

series of numbers

• Case: = 1 if n = 1

 n + otherwise

• E.g.: = 1 + 2 + 3 = 6

• Generalizing to any function f:
 f (1) if n = 1

 = f (n) + otherwise

• Examples: if f (x) = 2; if f (x) = x, etc.

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 65

• Who has done file I/O?

5. Java file I/O

David Keil Computer Science II 1. Methods 7/15 66

Subtopic objectives

1.5a Explain streams and sequential

file I/O*

1.5b Read a file using a loop**†

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 67

File streams

• A file stream is a sequence of characters

moving to or from a storage device

• Java standard file manipulation classes:

Scanner, FileReader, PrintWriter

• If a file cannot be opened, a

FileNotFoundException is thrown at runtime,

possibly generating an error message

• Exceptions are covered later in this course

David Keil Computer Science II 1. Methods 7/15 68

File stream input
• To open file for input:
FileReader reader = new FileReader(”x.txt”);

Scanner fin = new Scanner(reader);

• The FileReader class defines a sequential text file

stream and its constructor opens the named file

• To read integer from input file (see keyboard input):
x = fin.nextInt();

• To close input file: fin.close();

• Any Scanner method usable for keyboard input is

also valid for file input

• Example file: update.java

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 69

File stream output
• To open file for output:
PrintWriter out = new PrintWriter(“x.txt”);

• Warning: Opening a text file for output in this way

erases any data previously stored under this name

• To write to file:
out.println(”Hello”);

• To close output file:
out.close();

• Any System.out method usable for screen output is

also valid for file output

• Example program: update.java

David Keil Computer Science II 1. Methods 7/15 70

File errors
• Attempting to open a file to read generates an

exception (with possible runtime error) if file is

not found

• The error is represented as an exception object

• Any method, such as main, that opens a file to

read should be defined with “throws

FileNotFoundException” in header

• Other file errors include attempting to read past

end of file, attempting to read an item of the

wrong data type

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 71

File-reading example
public class add // update.java

{

 public static void main(String[] args)

 {

 FileReader reader =

 new FileReader(”x.txt”);

 Scanner in = new Scanner(reader);

 int x1 = in.nextInt();

 int x2 = in.nextInt();

 int sum = x1 + x2;

 System.out.println("Sum is “ + sum);

 }
}

David Keil Computer Science II 1. Methods 7/15 72

Check file stream before reading

FileReader freadr = new

FileReader(“x.txt”);

Scanner fin = new Scanner(freadr);

String line;

if (fin.hasNextLine())

 line = infile.getNextLine();

• Here, the FileReader object fin can detect

the state of the stream

• Possible errors: file not found; file empty

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 73

public static void main(String[] args)
 throws FileNotFoundException
{
 System.out.println("Reading file");
 FileReader reader = new
 FileReader("Readfile.txt");
 Scanner fin = new Scanner(reader);
 while (fin.hasNextInt())
 {
 int x = fin.nextInt();
 System.out.print(x + " ");
 }
 fin.close();
}

A file-reading loop

David Keil Computer Science II 1. Methods 7/15 74

Passing a file object

to a method

• Passing a Scanner object to a method enables

error checking and reusability

• Example:
public static int readInt(Scanner sc)

{

 if (sc.hasNextInt())

 return sc.nextInt();

 else return (-1);

}

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 75

Opening files with path names

• A file may be opened even if in a

different directory

• File name is specified using the

entire path name

• Example:
“c://cs1//myprog.java”

David Keil Computer Science II 1. Methods 7/15 76

Scanning for patterns

• Scanner method: useDelimiter

• Parameter: regular expression, e.g.,

[a-zA-Z’] scans for any word, possibly

with apostrophe

• Caret scans all characters up to specified

delimiter, e.g., [^)]

• Token vs. line based file processing:

Reges, pp. 407-409

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 77

Scanning a string

• A Scanner object may be associated with

a string

• Example:
Scanner sc = new Scanner(”1 2 3 4 5”);

enables use of nextInt() five times

David Keil Computer Science II 1. Methods 7/15 78

The File class

• Alternative to FileReader, PrintWriter

• Note: any method that opens any file must

be defined with
throws FileNotFoundException

1. Methods David Keil CS I I 7/15

David Keil Computer Science II 1. Methods 7/15 79

Cay Horstmann. Big Java, 3rd ed. Wiley,

2008, Ch. 3.

D. Keil. Defining and using methods.

Classroom handout.

D. Keil. Defining a class.

Classroom handout.

S. Reges and M. Stepp. Building Java

Programs. Pearson, 2014.

References

