
CSCI 252: Computer Science II
David M. Keil, Framingham State University, Spring 2014

SYLLABUS

Invitation

Now that you’ve taken CS I and have some skills

with the Java language, would you like more expertise

and confidence in software development skills?

Would you like to have the capability to build larger

programs? Does object-oriented design interest you?

Course description (FSU catalog)

An intermediate programming course that

emphasizes debugging, documentation, and modular

and object-oriented design with tools such as the

Unified Modeling Language. Topics include event-

driven programming, string and array manipulation,

sorting and searching, file operations, dynamic

memory allocation, inheritance, polymorphism, and

exception handling.

Prerequisites: MATH 200 Precalculus (may be

taken concurrently) and CSCI 152 Computer

Science I Using Java.

Course overview

This course continues CS I’s study of problem

solving, algorithm design, and debugging. The central

content of CS II consists of new programming and

programming-language concepts and intermediate-

level software development skills such as program

design and debugging.

We will focus on object-oriented design and on four

key concepts, encapsulation, containment, inheri-

tance, and polymorphism. We’ll apply them in Java.

CS II starts with an expanded review of material

from the CS I introductory course: Java data types,

loops, debugging, and files.

This course introduces nested loops and searching

and sorting of arrays. CS II students will acquire

skills in building and verifying larger programs.

Debugging is a crucial programming skill,

developed in this course. We will emphasize

techniques like tracing that help locate errors.

We will define collections stored on disk and in

memory, including arrays of objects to implement the

database concept of a relation.

The main principles on which this course is based

are: structured design; object-oriented design,

including containment and inheritance; nested loops;

concern for time efficiency.

We will connect the topics together with a

programming project that will be part of the ongoing

course activities.

CS II is a rigorous and demanding course, with

heavy emphasis on lab work on intermediate-level

software-development problems.

Textbooks

Reading a textbook makes a lot of difference,

because everyone needs explanations of concepts.

Use your CS I textbook or another Java textbook by

an academic publisher. The course plan (p. 3) cross-

references course topics with three Java texts with

which I’m familiar.

Meeting times

We meet Monday and Wednesday, 8:30-10:20, in

Hemenway Hall 229.

To contact me:

Office hours (Hemenway Hall 318A):

Mon. 10:30-11:30 a.m.; Tue. 5:30-6:30 p.m.;

Wed. 3:30-4:30 p.m.

Telephone: (508) 626-4724

Email: dkeil@framingham.edu

URL: www.framingham.edu/~ dkeil

I like talking with students about what we’re

studying. Even if everything is clear enough, please

check in with me at least twice in the semester.

How the course will deliver what it offers

My goal is to create a natural critical learning

environment. In CS II, this means working on solving

realistic software problems. We all learn at our own

pace, and we are all together in this class learning.

For each of the six topics, I’ll speak about the topic

for a few minutes, with slides and with examples to

compile, run, and discuss; we’ll make space for group

work; and we’ll have in-class and out-of-class written

exercises. Practice exercises and quiz questions help

me track what students learn.

For each topic, we’ll have two to four two-hour

sessions. I’ll ask you to solve some topic practice

problems and to let me see your solutions by the end

of the session before the last one on the topic. I’ll look

at them and provide comments.

mailto:dkeil@framingham.edu

David Keil Framingham State University CSCI 252 Computer Science II Spring 2014 2

In the last session on the topic, we’ll have a review,

with problem solving by students; a multiple-choice

quiz; and a set of problems in quiz form.

For every topic, there’ll be two or three more

chances to solve problems in make-up quizzes. What I

track is a student’s best work on problems that assess

course objectives.

See the essay, “What we do in my classroom.”

Programming project

Step by step, as the course proceeds, you will build

a two-part Java programming project that will make

use of control structures, debugging, class design,

arrays, and file input/output. It will provide

experience in coding, testing, and documentation of

specifications, design, and code. The first part is a

file-maintenance program that manages a collection

that you will specify. The second part is an even

larger program, either to design and code your own

application, or to modify a larger application written

by others; an even larger project with documented

group contribution is an option.

Learning outcomes

The course objectives are summarized and

measured by several learning outcomes per topic; see

next page. Some outcomes, mostly from CS I, are

essential for success. All students who pass the course

will have shown success with these capabilities.

I will work to help students reach the outcomes

listed on the back page. Outcomes are a kind of very

specific learning objective. Some of our outcomes are

especially central; these I call “priority outcomes” and

they are indicated by asterisks.

If you’re tracking my opinions, it may help you to

use that sheet as a score card, writing on it the

numbers (from 1 to 4) that I write beside your quiz

answers. Update these numbers as you answer

questions on make-up versions of the quizzes; your

highest score on an outcome is the one that matters.

Topic objectives

1. Define and test Java methods and classes with

object-oriented features

2. Define and safely manipulate arrays, designing

nested loops and applying search and sorting

algorithms

3. Explain, design, and implement a multi-class

application that manages a disk-based collection

4. Explain and implement the notions of an

inheritance hierarchy and of polymorphic behavior

5. Explain event-driven GUI development and use

Java graphics libraries to implement such a GUI

6. Describe concurrent features of mobile and web

environments and implement concurrency with

Java threads

Grading and assessment of learning

In evaluating the work of individual students,

evidence of two kinds of accomplishment matter to

me: learning of course objectives, and contribution to

the learning of others. The graphs below show their

relative importance to me and the relative importance

of their components or methods of assessment.

 Overall Learning Contribution

I evaluate answers to quiz questions, as well as

project work and some exercises, using the rubric

below. 4 means, roughly, “excellent”; 3 means

“good”; 2 means “OK”; 1 means “weak success.”

An answer without one of these scores is considered

not yet successful; try again.

Code Meaning %

4 Solves problem thoroughly and accurately.

Applies relevant concepts adeptly and

insightfully. Fully supports claim of

mastery of outcome.

100

3 A mostly successful solution with some

omissions or errors. Generally accurate

application of concepts. Gives strong

support for claim of success with outcome.

87

2 Solution shows some grasp and application

of relevant concepts, reflecting significant

partial achievement of outcome.

73

1 A solution that shows some idea about

relevant concepts, meeting minimum

standards for outcome.

61

Accommodations

 “Students with disabilities who request

accommodations are to provide Documentation

Confirmation from the Office of Academic Support

within the first two weeks of class. Academic Support

is located in the Center for Academic Support and

Advising (CASA). Please call (508) 626-4906 if you

have questions or if you need to schedule an

appointment.” (See http://www.framingham.edu/

CASA/Accommodations/accomm.htm.)

http://www.framingham.edu/

David Keil Framingham State University CSCI 252 Computer Science II Spring 2014 3

Course Plan

 Relevant chapters

Dates Topic Horstmann
1
 Reges

2
 Downey

3

1/22 -2/3 Introduction and review:

data types; algorithms; files

1-2, 4-6 1-6 1-2, 4.1-4.5, 7-

8, Appx. B-D

2/5 – 2/19 1. Class and method design 3, 8, 11-13 8, 12 3, 4, 6,

9, 11

2/24 – 3/5 2. Arrays 7, 14 7, 10, 13 12

3/10 – 3/12 3. Collections 11, 15-16 13-15

3/24 – 3/26 4. Inheritance and polymorphism 9, 18 9

3/31 Review and quiz make-ups

4/2 – 4/7 5. Event-driven GUIs and Java graphics 10, 15-16, 19 3G Appx. A

4/9 – 4/14 6. Concurrency in mobile and

web computing

21-22

4/16 – 4/30 Summary and review

Fri., 5/9,

8:00-11:00

Final exam (presentations)

Ver. 1/17/14

1
 Cay Horstmann Big Java Early Objects, 5

th
 ed.

2
 Stuart Reges and Marty Stepp, Building Java Programs, 3

rd
 ed., Pearson, 2014

3
 Allen Downey, Think Java, 2012, free download.

David Keil Framingham State University CSCI 252 Computer Science II Spring 2014 4

Subtopic outcomes for CSCI 252 Computer Science II

Expanded CS I review

____ 0.1a Compile and test a

Java program**

____ 0.1b Use logical operators in

a program*

____ 0.1c Evaluate an expression that

uses logical operators*

____ 0.1d Debug a program with

type errors *

____ 0.1e Use bitwise operators

____ 0.2a Trace a looping

flowchart**

____ 0.2b Design a looping

algorithm**

____ 0.2c Argue for the correctness of

a loop design**

____ 0.2d Solve a numeric loop

problem in Java**

____ 0.2e Solve a loop problem

with strings**

____ 0.2f Trace a Java loop**

____ 0.2g Debug a defective loop**

____ 0.2h Describe an instance of the

testing and debugging

process*

____ 0.3a Explain streams and

sequential file I/O**

____ 0.3b Read a file using a loop**

____ 0.4a Describe Java syntax

for statements**

____ 0.4b Describe Java syntax

for expressions**

____ 0.4c Explain how the Java

virtual machine works*

1. Class and method design

____ 1.1a Explain procedural

abstraction**

____ 1.1b Define a Java method**

____ 1.2a Explain method signatures,

overloading, and scope of

variables*

____ 1.2b Derive a loop from a

recursive function

definition

____ 1.2c Write a method with

parameters and return

values**

____ 1.2d Debug a method

____ 1.3a Describe Java data

abstraction**

____ 1.3b Contrast memory allocation

for simple types and

objects**

____ 1.3c Define a Java class**

____ 1.4a Describe Java

encapsulation, cohesion,

decoupling*

____ 1.4b Write and document a class

with interface and

implementation

____ 1.4c Describe class

debugging concepts

____ 1.4d Test and debug a class*

____ 1.4e Locate a fault in a multi-

method class

____ 1.5a Explain exception

handling*

____ 1.5b Use exceptions

2. Arrays

____ 2.1a Describe Java arrays**

____ 2.1b Define and use an array**

____ 2.2a Write array code with

boundary checking*

____ 2.2b Write a simulation using a

random number generator

____ 2.2c Write an encryption/

decryption program

____ 2.2d Define a two-dimensional

array

____ 2.3a Give the output of a

nested loop*

____ 2.3b Debug a nested loop*

____ 2.3c Explain a search algorithm

____ 2.3d Search an arra y*

____ 2.4a Explain a sorting algorithm

____ 2.4b Sort an array*

3. Collections

____ 3.1a Explain principles of

object-oriented design*

____ 3.2a Explain what a collection

is*

____ 3.2b Define and test a

collection*

____ 3.2c Define and use an iterator

____ 3.3a Explain the design of file-

maintenance applications*

____ 3.3b Write and test a file-

maintenance application*

____ 3.3c Describe random-access

files

____ 3.4a Distinguish references

from objects*

____ 3.4b Explain linked lists

____ 3.4c Define a linked-list class

4. Inheritance and polymorphism

____ 4.1a Distinguish containment

from inheritance*

____ 4.1b Design an inheritance

hierarchy

____ 4.1c Explain multiple

inheritance and the

diamond inheritance

problem, with solutions

____ 4.2a Define a derived class*

____ 4.2b Explain overloading,

overriding, and shadowing

____ 4.3a Explain polymorphism, late

binding and

virtual methods*

____ 4.3b Implement polymorphism

5. Event-driven GUIs; graphics

____ 5.1a Explain event-driven

programming*

____ 5.1b Write event-driven code

____ 5.2a Describe elements of a

graphical user interface*

____ 5.2b Use an application class in

an application framework

____ 5.3a Describe Java graphics

tools

____ 5.3b Write a graphics

application

6. Concurrency

____ 6.1a Distinguish concurrency

from serial processing*

____ 6.1b Describe multi-threading

____ 6.1c Use Java threads

____ 6.2a Describe features of

software for mobile

computing

____ 6.2b Design a multi-threaded

robotic program

____ 6.3a Describe issues in web

software development

____ 6.3b Write a Java applet

____ 6.4a Describe ethical issues for

computer professionals

____ 6.4b Defend a position on an

ethical issue

__

* Priority objective

** Essential objective

2/5/14

David Keil Framingham State University CSCI 252 Computer Science II Spring 2014 5

`

