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Three research communities
• Multi-agent systems (MAS)
• Evolutionary computation (EC)
• Models of computation• Models of computation
Subcommunities: 

–Theory and Practice of Open Computational 
Systems (TAPOCS)

–Environments for Multi-Agent Systems (E4MAS)
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–Foundations of Interactive Computation (FInCo)
–EC in dynamic environments
–Coordination
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Common trends in 
EC and MAS research

• Trend toward addressing environments that 
are dynamic and persistent (to be defined)

• Trend toward using agents in MASs that 
communicate via their environments 

• We call this communication via the 
environment indirect interaction
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environment indirect interaction
• The theory of these fields is emerging

A gap between practice and theory 
in MAS and EC research

• Whereas in practice, agents in MASs and EC often 
interact indirectly via their environments…y

• …theory of concurrency models all interaction as 
direct message passing

• Gap: Indirect interaction in practice, direct 
interaction in theory

• Q: Is indirect interaction necessary to solve certain
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• Q: Is indirect interaction necessary to solve certain 
classes of problems?

• A (our central hypothesis): Yes. Hence new, more 
expressive models are needed to close the gap
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Outline
1. Relevant definitions

Algorithmic computation
Interactive computationInteractive computation
Multi-stream interaction
Direct vs. indirect interaction

2. Indirect interaction in MAS research

3 Indirect interaction and adaptation in EC
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3. Indirect interaction and adaptation in EC

4. Formal models of interaction

5. Our research goals

Algorithms
Algorithmic computation (Knuth):
The effective transformation of a finite, pre-
specified input to a finite output in a finitespecified input, to a finite output, in a finite 
number of steps.

• Algorithms compute functions
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g p f
• A system that executes an algorithm is closed
• Algorithms are equivalent to Turing-machine 

computation
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Interactive computation
Interactive computation (Wegner):
The ongoing exchange of data among the 
participants (agents or their environment)

• Interaction involves feedback from 
environment during the computation

participants (agents or their environment) 
such that the output of each participant 
may causally influence its later inputs. 
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g p
• Interaction is assumed to be unending
• Example: An automatic car driving from 

point A to point B

Sequential interaction
Sequential interactive computation: Interaction 
involving two participants, at least one of which 
is a finite computing agent (machine, device).p g g ( , )

• Characterized by a single interaction stream of 
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y g
input/output; input alternates with output 

• If one participant is an agent, the other is its environment
• Interaction may involve changes of state
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Multi-stream interaction
Multi-stream interaction: Interactive 
computation involving more than two entities; 
th titi b hthe entities may be asynchronous.

In contrast to sequential 
interaction, multi-stream 
interaction may include: 

Agents/processes
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• Nondeterminism when attempts to write collide
• Dynamic linking and unlinking, creation/destruction
• Indirect interaction via a shared environment

Direct and indirect interaction
Direct interaction:
interaction via 
messages, where the 
identifier of the

Indirect interaction:
interaction via persistent, 
observable changes to a 

i tidentifier of the 
recipient is specified 
in a message.

common environment; 
recipients are any agents that 
will observe these changes.

• Sequential interaction is direct
• Preconditions for indirect interaction: 
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• Agents share access to parts of the environment
• Persistence of environment

• Example of indirect interaction: use of semaphores in 
process synchronization (critical section problem)
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3. Indirect interaction and adaptation in EC

4. Formal models of interaction

5. Our research goals

Stigmergy in nature
1. Ants foraging for food: Ants leave 
pheromone trail, prefer existing trails, 
blaze shorter and shorter trails to and from food
2. Termites gathering chips into pile: Move at 
random, pick up chip when encountered, put down 
when another chip found; the pile structure is used to 
coordinate creation of pile (StarLogo)
3. Slime mold dividing and aggregating:
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g gg g g
These amoeba may aggregate by emitting a chemical, 
migrating toward its greatest concentration

Q: Is stigmergy essential for some tasks?
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Ubiquity of indirect interaction
• Social biology: Social insects interact by modifying 

common structures or through pheromones
• Operating systems: Processes communicate via p g y

semaphores in shared memory
• Coordination languages: Shared tuple spaces enable 

coordination in Linda
• Anatomy: Cells exchange information via hormones

in the blood stream
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in the blood stream
• Economics: A market is an environment for buyers 

and sellers that serves as a medium for indirect 
interaction

Properties of indirect interaction
• Time decoupling (asynchrony):

State changes persist
A i R i i ID d i• Anonymity: Recipient ID not used in access

• Space decoupling: Agents need not meet
• Non-intentionality: Agents need not 

have goal of communicating
• Hybrid nature:
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• Hybrid nature: 
Physical environment may play role

• Late binding of recipient
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What is an environment?
An environment of a system of computing 
entities is a physical or virtual setting that acts 
as the producer of the system’s inputs andas the producer of the system s inputs and 
consumer of its outputs. 

• The environment is a participant and a memory, 
not just a medium for message transport

• This creates a need to elevate the MAS 
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environment to first-class status
• EU conferences (e.g., E4MAS) have called 

attention to role of environments

Environments for multi-agent systems
E4MAS 2005 Proceedings cited as
examples the environments of:
• visitors to a web site;
• a system of autonomous guided vehicles; 
• a system of manufacturing control; 
• a PDA-based system of agents to help 
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a based syste o age ts to e p
support activities of museum visitors. 

All involve indirect interaction
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A taxonomy of environments
Amnesic 

vs. 
Persistent

Static
vs. 

Dynamic

Virtual
vs.

Physical Persistent Dynamic Physical  
• An environment is amnesic if its outputs depend 

only on its immediately preceding inputs
• An environment E is static with respect to an 

agent or MAS A if its outputs to A are strictly 
dependent on its previous inputs from A
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dependent on its previous inputs from A
• A virtual environment is accessed digitally; 

a physical environment is observable only by 
analog sensors. 

Adaptation in difficult environments
• The most difficult problem environments 

are persistent, dynamic, and physical
• MASs can offer powerful adaptive, 

flexible solutions in such environments
• Conjecture: Indirect interaction provides 

added power in MAS solutions because of 
anonymity asynchrony space
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anonymity, asynchrony, space 
decoupling, non-intentionality
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Adaptation and multi-agent systems
• MASs enable distributed AI (Ferber)
• Behavior: action to change the environment
• Adaptation: learning that changes behavior –Adaptation: learning that changes behavior 

occurs in dynamic persistent environments
• MASs are often flexible enough to adapt well
• Three ways to view adaptation:

– Ontogenetic (adaptive agent)
– Sociogenetic (adaptive population)
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g ( p p p )
– Phylogenetic (adaptation by species)

• Sociogenetic adaptation = 
adaptation by multi-agent systems

Decentralized, self-organizing systems
• Decentralized and self-organizing systems lend 

themselves to flexibility and adaptiveness
• Where required: in environments that are dynamic, 

persistent multi agent decentralized and self organizing

Decentralized system: a multi-agent system whose 
components do not respond to commands from an active 
director or manager component, and do not execute 
prespecified synchronized roles under a design or plan.

persistent, multi-agent, decentralized, and self-organizing. 
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Self-organizing system: a multi-agent system with a coher-
ent global structure or pattern shaped by local interactions 
among components, rather than by external forces.
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3. Indirect interaction and adaptation in EC

4. Formal models of interaction

5. Our research goals

The evolutionary algorithm
• A population-based approach to function optimization
• Solutions are evolved, using selection, mutation, crossover
• Traditional EC uses objective (fitness) function to evaluate 

an element of a populationan element of a population
t ← 0 // time
initialize (P0) // evolving population
y ← evaluate (P0) // fitnesses of population members
while not terminate (y, t) do

t ← t + 1
Pt ← select (Pt 1, y) // choose a good new generation
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Pt ← select (Pt-1, y) // choose a good new generation
Pt ← alter (Pt) // involves mutation, crossover
y ← evaluate (Pt) // generates a vector of fitnesses

Based on (Michalewicz, 1996)

• The evolution occurs offline, not embedded in environment
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Example: checkers heuristics
• A set of checkers-playing heuristics (weights of attri-

butes of a board layout), is evolved (Samuels ’59)
• Fitness: rate of wins that a set of heuristics obtainsFitness: rate of wins that a set of heuristics obtains
• Population P consists of sets of weights (values) of 

different attributes of a checkers board configuration
• E.g., opportunity to jump is of weight 5, opportunity 

to king is 3, etc.
• EC here refines heuristics that help compute a
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• EC here refines heuristics that help compute a 
function from board configurations to (good) moves

• Fitness function is applied by putting heuristics in 
competition with other heuristics

EC has addressed static environments
• Environment is static in the checkers example 

because the game rules don’t change during 
evolution

• Static environment = 
single (unchanging) fitness function

• In a dynamic environment, fitness or reward will 
change as the environment changes

• An interactive agent in a changing environment 
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g g g
must adapt its response as environment changes

• Single fitness function in EC ⇒
Environment cannot be dynamic
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Policy in a dynamic environment
• When environment changes policy must evolve; 

policy search is a reinforcement-learning concept
• A rational policy: one that maximizes reward
The policy of agent M, with respect to environment E, 
is a computable function from possible perceptions, or 
models, of E, to M’s set of outputs.
The fitness of a policy in environment E, is the expected 
long-term reward in E of an agent with that policy.
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• In dynamic environment, reward function evolves
• Policy must change as the environment’s responses to 

agent change; policy search is online

Dynamic-environment example
• Suppose we play cat-and-mouse on a grid
• Agent is mouse; Environment is cat and grid

G l f li b fl i• Goals of mouse policy: escape by fleeing 
or hiding

• Assume mouse policy is to be evolved; fitness 
function is survival rate of a policy

• If cat speeds up over time, then mouse policy
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If cat speeds up over time, then mouse policy 
must switch from flee to hide

• Traditional evolutionary algorithm fails here 
because it assumes static environment



Keil Modeling indirect interaction

The evolutionary algorithm revisited

t ← 0
initialize (P0 , E0)

• When environment E is dynamic, EA must be 
parameterized with it

y ← evaluate (P0, E0)
while not terminate (y, t) do

t ← t + 1
Et ← update-environment (Et-1, y)
Pt ← select (Pt-1, y)
Pt ← alter (Pt)
y ← evaluate (Pt, Et)
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• Goal is to evolve solution population P to better fitness 
relative to changing environment

• If update-environment is autonomous, then evolution of 
the population is not an algorithm!

No Free Lunch theorem (1996)
• No algorithmic procedure can optimize cost functions 

better than any other algorithmic procedure, averaged 
over all cost functions.

• c = histogram of cost function f; 
a1, a2: arbitrary function-optimization algorithms
P = probability of histogram
m = a sample size
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• NFLT corollary: If a given optimizing algorithm does 
well on one problem, it will do poorly on another one

• Result: Human domain knowledge is needed for most 
evolutionary computation
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Resolving the NFLT paradox
• Paradox: Whereas by NFLT good general-purpose 

problem-solving algorithms can’t exist…
till h k i t h• …still, such processes are known to exist, such as 

natural evolution of life, and the scientific method
• Solution: NFLT applies to algorithms in static

environments; does not apply to interactive 
learning processes occurring in dynamic persistent 
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environments
• Adaptation to environments (learning of policies) 

is interactive, not algorithmic

Multi-agent interaction in EC research
The two research areas (MAS and EC) 
intersect in research on:
• Swarm or ant computing• Swarm or ant computing
• Coevolution: Evolution of species whose 

instances interact in multi-agent systems
• Particle swarm optimization: Particles are 

candidate solutions to a problem in 
di i l i l l d
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n-dimensional space, particles are accelerated 
through this space in relation to each other 
and to objective function
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3. Indirect interaction and adaptation in EC

4. Formal models of interaction

5. Our research goals

Contributions to the theory of 
interactive computing

• c-machine (Turing), finite transducer (Moore)
• Cybernetics: models of feedback systems (Wiener)
• Information theory/communication theory (Shannon)
• Concurrency with message passing: CSP (Hoare), CCS 

(Milner), π calculus (Milner)
• Recent models of sequential interaction: 

I/O Automata (Lynch), Abstract State Machines 
(Gurevich) Site Machines (van Leeuwen Wiedermann)
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(Gurevich), Site Machines (van Leeuwen, Wiedermann)
• Interaction Machines and Persistent Turing Machine 

(Wegner, Goldin) 
• Emerging intuition: Interaction is part of computation



Keil Modeling indirect interaction

Persistent Turing Machines

• A minimal extension of TMs expressing sequential 
interactive behavior (Goldin, I&C)

• A PTM is a 3-tape TM with 
– I/O as dynamically generated streams of 

interleaved inputs and outputs
– TM executions (macrosteps) iterated
– A persistent worktape, called a memory, preserved 

between macrosteps
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• Example: automatic car
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Stream behavior of PTMs
• The persistent stream language (PSL) of a PTM is 

the set of streams L ⊆ (Σ* × Σ*)∞ observable on it
• The set of all I/O streams over alphabet Σ:The set of all I/O streams over alphabet Σ: 

(Σ* × Σ*)∞ = { (a, x) | a ∈ (Σ* × Σ*) , x ∈ (Σ* × Σ*)∞ }
• PSL is the set of all persistent stream languages
• Amnesic PTMs do not make use of their memory, 

i.e., are equivalent to TMs in that sense
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• ASL: The set of amnesic stream languages
• Theorem: ASL ⊂ PSL (Goldin, Smolka, et al, I&C, 

2004), hence PTMs are more expressive than TMs
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The message-passing model 
of concurrency

• Due to Robin Milner: CCS, π Calculus; associated 
with theory of concurrency and with process y y p
algebra

• These models capture the notion of direct 
interaction by message passing

• Axiom of concurrency theory: 
interaction = message passing
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interaction  message passing
i.e., atomic communication of a message from one 
process to another (targeted send/receive)

• Shared variables are deemed processes

Limitations of the 
message-passing model

• Message passing does not support properties of indirect 
interaction: anonymity, asynchrony, space decoupling, 
non-intentionality, and late binding

• Embedded and situated systems aren’t supported 
• Suppose agents A and B communicate via shared 

variable X
– The message-passing model
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The message passing model 
accounts for direct A ↔X and 
B ↔ X interaction . 

– …but not between A and B via X
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3. Indirect interaction and adaptation in EC

4. Formal models of interaction

5. Our research goals

Research goals
• We propose to obtain formal results to 

establish some limitations of the message-
passing modelp g

• We seek an expressiveness result analogous to 
the one for sequential interaction by Goldin-
Smolka et al

• Setting: A large system of simple agents
• We propose to use three proof approaches:
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We propose to use three proof approaches:
– Formal behavioral specifications
– Unscalability
– Simulation asymmetry
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Goal: formal specification of problems 
that entail indirect interaction

• We propose to find a class of useful missions 
or tasks that would require indirect interaction

• Setting: A large system of simple agents
• Initial idea: to look at insect stigmergy

examples – would tasks be impossible without 
stigmergy?

• If indirect interaction is needed to meet these
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If indirect interaction is needed to meet these 
specs, then an adequate model must  represent 
that interaction explicitly

• A tool: specification languages and notations

Goal: to show unscalability 
of message passing

• Motivation: As unscalable architectures in AI are 
brittle and will fail in realistic settings (R. Brooks), g ( ),
so for unscalable MAS architectures and models

• Hypothesis: As the number of agents rises 
asymptotically, either number of connections 
grows too fast, or else paths between agents 
become too long
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g
• Other dimensions to show unscalability:

– Synchronization vs. asynchrony
– Centralized vs. decentralized storage
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Goal: to show an asymmetric 
simulation relation

• … between message-passing-based models and models 
based on indirect interaction 

• Motivation: Simulation asymmetry would imply that 
current models are inadequate

• Hypothesis: Direct interaction cannot simulate indirect 
interaction in setting of large system of simple agents

• One possible simulation of direct interaction by 
i di t

Keil dissertation proposal 41

indirect: 
– An agent puts a tuple into the shared environment
– Tuple contains the both message and addresses
– Recipient reads tuples that contain its ID

1. Common trends in EC and MAS research
2. A gap separates the practice and the theory of these fields
3. NFL Theorem does not apply in dynamic environments

bl d b i di i i

Summary

4. Properties enabled by indirect interaction: anonymity, 
asynchrony, non-intentionality – models must support them

5. Goal: Expressiveness results showing the need for explicit 
models of indirect interaction;

6. Approaches: 
– show behavioral specifications that entail indir inter
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show behavioral specifications that entail indir. inter.
– show unscalability of message-passing models
– show an asymmetric simulation relation between 

models of message-passing and indirect interaction.
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Evolution and distributed AI
Old Find a computational path New Learn a policy
AI/EC Reasoning in a closed world AI/EC Rational reactive behavior

Human intervention Autonomy
Heuristics Emergent behavior
To en ironment Real orld en ironment

• AI has moved away from systems that reason in a closed 
algorithmic world, toward rational-agent behavior

• The same can happen with EC and MAS as they converge
• AI is more and more associated with distributed and MASs

Toy environment Real-world environment
Brittle solutions Scalable solutions
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AI is more and more associated with distributed and MASs
• A hierarchy of difficulties of interactive problems: 


