
 David M. Keil CSCI 317 Discrete Structures
 Framingham State University 2/14

Study questions on Discrete Structures for Computer Science
The intention in providing these questions is to show

the student what sorts of fact and problems we address in

this course.

Most of the multiple-choice questions are factual.

Knowing that one can answer the questions correctly can

raise your confidence in your learning. Awareness of not

knowing answers of some questions can help guide

your review.

Multiple-choice questions are organized by subtopic in

the course plan. Questions below are intended to

correspond to slides, in content and in ordering.

I appreciate hearing about questions that don’t

correspond fully.

In certain versions of this file, answers to multiple-

choice questions are supplied. Grading of all quizzes will

be according to the correct answer, not the answer that has

been provided in some list of answers. Please question any

purported correct answers that you don’t agree with or

don’t understand.

Contents

Introduction

1. Boolean algebras, logic, and inductive proofs

2. Sets, relations, and recurrences

3. Graphs and transition systems

4. Trees and their uses

5. Decidability and countability

6. Combinatorics and discrete probability

7. Information theory, randomness, and chaos

Summary

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Study questions on Introduction and background

1. What this course offers

1. An example of analog representation is (a) a file stored on a

computer; (b) a message sent on the Internet; (c) the sound

heard from an IPod; (d) a picture in RAM; (e) a register in a

processor

2. Analog is to digital as continuous is to (a) binary; (b) infinite;

(c) discrete; (d) irrational; (e) none of these

3. Discrete is to continuous as (a) binary is to decimal;

(b) real is to integer; (c) digital is to analog; (d) infinite is to

finite; (e) none of these

4. An algorithm lacks which of these features? (a) computes a

function; (b) is deterministic; (c) may take an unreasonably

long time; (d) works in discrete steps; (e) may never end

5. Algorithm specifications presuppose (a) that input has

occurred; (b) that processing has occurred; (c) that output has

occurred; (d) the meaning of input; (e) that loops time out

6. Algorithms solve problems that are associated with

(a) services; (b) protocols; (c) irrational numbers;

(d) functions; (e) none of these

7. A function is a (a) truth value; (b) data item; (c) algorithm;

(d) process; (e) mapping

8. A function may often be computed by a(n) (a) service;

(b) interactive protocol; (c) multi-agent system;

(d) algorithm; (e) event-driven program

9. Input to an algorithm is (a) necessarily atomic;

(b) obtained before algorithm execution; (c) obtained during

execution; (d) necessarily compound; (e) possibly infinite

10. An algorithm is a(n) (a) program; (b) plan; (c) structure;

(d) service; (e) process

11. Discrete structures are (a) algorithms; (b) real numbers;

(c) objects; (d) truth values; (e) arrays

12. Symbols are (a) analog; (b) real; (c) discrete; (d) continuous;

(e) waves

3. Logic and proof techniques

1.  denotes (a) set membership; (b) union; (c) AND;

(d) a relation between sets; (e) negation

2.  denotes (a) set membership; (b) union; (c) AND;

(d) a relation between sets; (e) logical negation

3. Logic manipulates (a) numbers; (b) algorithms;

(c) truth values; (d) sound; (e) strings

4.  denotes (a) set membership; (b) union; (c) AND; (d) OR;

(e) implication

5.  denotes (a) set membership; (b) union; (c) AND; (d) OR;

(e) implication

6. A logic is (a) a language; (b) a rule; (c) a set of truth values;

(d) a set of numeric values; (e) none of these

7. Logic manipulates (a) strings; (b) numbers; (c) truth values;

(d) programs; (e) objects

8. If p = false, q = false, and r = true, then which is true?

(a) p  (q  r); (b) p  (q  r); (c) (p  q)  r;

(d) p  (q  r); (e) p  (q  r)

9. (T-F) If we live on Pluto, then cats have wings.

10. (T-F) If airplanes fly, then 1 + 1 = 2.

11. (T-F) If the earth is flat, then 1 + 1 = 2.

12. (T-F) If the earth is round, then 1 + 1 = 3.

13. (T-F) If trees have ears, then dogs have wings.

14. (T-F) 2 + 2 = 4 only if 1 + 1 = 3.

15. An if-then assertion whose first clause is true is (a) never

true; (b) sometimes true; (c) always true; (d) meaningless;

(e) none of these

16. A rigorous demonstration of the validity of an assertion is

called a(n) (a) proof; (b) argument; (c) deduction;

(d) contradiction; (e) induction

17. A proof that begins by asserting a claim and proceeds to

show that the claim cannot be true is by (a) induction;

(b) construction; (c) contradiction; (d) prevarication;

(e) none of these

18. A proof that proceeds by showing the existence of something

desired is by (a) induction; (b) construction; (c) contradiction;

(d) prevarication; (e) none of these

19. Proofs by contradiction (a) dismiss certain rules of logic;

(b) misrepresent facts; (c) start by assuming the opposite of

what is to be proven; (d) end by rejecting what is to be

proven; (e) none of these

20. Induction is a(n) (a) algorithm; (b) program; (c) proof;

(d) proof method; (e) definition

21. Contradiction is a(n) (a) algorithm; (b) program; (c) proof;

(d) proof method; (e) definition

22. Construction is a(n) (a) algorithm; (b) program; (c) proof;

(d) proof method; (e) definition

23. A proof that begins by asserting a claim and proceeds to

show that the claim cannot be true is by (a) induction;

(b) construction; (c) contradiction; (d) prevarication;

(e) none of these

Inductive proof

1. The induction principle makes assertions about

(a) infinite sets; (b) large finite sets; (c) small finite sets;

(d) logical formulas; (e) programs

2. A proof that proceeds by showing that a tree with n vertices

has a certain property, and then shows that adding a vertex to

any tree with that property yields a tree with the same

property, is (a) direct; (b) by contradiction; (c) by induction;

(d) diagonal; (e) none of these

3. A proof that shows that a certain property holds for all natural

numbers is by (a) induction; (b) construction;

(c) contradiction; (d) prevarication; (e) none of these

4. The principle of mathematical induction states that if zero is

in a set A, and if membership of any value x in A implies that

(x + 1) is in A, then (a) A is all natural numbers; (b) the proof

is invalid; (c) A is the null set; (d) A is x; (e) A is {x}

5. In an inductive proof, showing that P(0) is true is (a) the base

step; (b) the inductive step; (c) unnecessary; (d) sufficient to

prove P(x + 1); (e) sufficient to prove P(x) for all x

6. In an inductive proof, showing that P(x) implies P(x + 1) is

(a) the base step; (b) the inductive step; (c) unnecessary;

(d) sufficient to prove P(x) for some x; (e) sufficient to prove

P(x) for all x

7. In an inductive proof, showing that P(0) is true, and that P(x)

implies P(x + 1), is (a) the base step; (b) the inductive step;

(c) unnecessary; (d) sufficient to prove P(x) for some x;

(e) sufficient to prove P(x) for all x

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

8. An inductive proof with graphs might proceed by

(a) showing a contradiction; (b) showing a counter-example;

(c) considering all graphs one by one; (d) starting with some

simple graph and adding one vertex or edge; (e) none of these

9. The base step in an inductive proof might (a) show that P(0)

is true, and that P(x) implies P(x + 1); (b) show that P(0) is

true; (c) show that that P(x) implies P(x + 1); (d) give a

counterexample; (e) assume the opposite of what is to be

proven

10. The inductive step in an inductive proof might (a) show that

P(0) is true, and that P(x) implies P(x + 1); (b) show that P(0)

is true; (c) show that that P(x) implies P(x + 1); (d) give a

counterexample; (e) assume the opposite of what is to be

proven

11. An inductive proof might consist of (a) showing that P(0) is

true, and that P(x) implies P(x + 1); (b) showing that P(0) is

true; (c) showing that that P(x) implies P(x + 1); (d) giving a

counterexample; (e) assuming the opposite of what is to be

proven, and proving a contradiction

4. Sets, relations, and functions

1.  denotes (a) set membership; (b) union; (c) conjunction;

(d) a relation between sets; (e) negation

2.  denotes (a) set membership; (b) union; (c) AND; (d) a set;

(e) negation

3.  denotes (a) set membership; (b) union; (c) AND; (d) a set;

(e) negation

4.  denotes (a) set membership; (b) union; (c) AND;

(d) a relation between sets; (e) negation

5. {1,2,3}  {2,4,5} = (a) {}; (b) {1,2}; (c) 2; (d) {2};

(e) {1,2,3,4,5}

6. {1,2,3}  {2,4,5} = (a) {}; (b) {1,2}; (c) 2; (d) {2};

(e) {1,2,3,4,5}

7. (T-F) {1, 3}  ({1, 3, 5}  {1, 5})

8. (T-F)   

9. (T-F)   

10. (T-F)   {}

11. (T-F)   {}

12. {} is a subset of (a) itself only; (b) no set; (c) all sets;

(d) only infinite sets; (e) none of these

13. A relation on set A is (a) an element of A; (b) a subset of A;

(c) an element of A  A; (d) a subset of A  A;

(e) none of these

14. A function f : {1,2,3}  {0,1} is a set of (a) integers;

(b) ordered pairs; (c) sets; (d) relations; (e) none of these

15. A string is (a) a set of symbols; (b) a sequence of characters;

(c) a relation; (d) a set of sequences; (e) none of these

16. The null set is a (a) member of itself; (b) member of any set;

(c) subset of any set; (d) superset of any set; (e) none of these

17. The power set of A is (a) the set of all members of A;

(b) a subset of A; (c) the set of subsets of A; (d) the null set;

(e) an intersection

18. For all sets A (a) A  A; (b) A  A ; (c) A ≠ A; (d) all of these;

(e) none of these

19. A relation on set A is (a) an element of A; (b) a subset of A;

(c) an element of A  A; (d) a subset of A  A;

(e) none of these

20. The Cartesian product of two sets is a(n) (a) set of sets;

(b) ordered pair; (c) set of ordered pairs; (d) subset of the two

sets; (e) union of the two sets

21. (A × B) is (a) the set containing elements of A and B; (b) the

set of ordered pairs of elements chosen from A and B

respectively; (c) any relation of elements of A and B;

(d) a function from A to B; (e) none of these

22. We may represent a Cartesian product as a (a) linear array;

(b) linked list; (c) matrix; (d) tree; (e) none of these

23. A relation is not a (a) set of ordered pairs; (b) set of numbers;

(c) subset of a Cartesian product; (d) way to express how two

sets relate; (e) it is all of these

24. A function f: {1,2,3}  {0,1} is a set of (a) integers;

(b) ordered pairs; (c) sets; (d) relations; (e) none of these

25. When A and B are sets, (A  B) is (a) a set of ordered pairs;

(b) an arithmetic expression; (c) a sequence of values;

(d) all of these; (e) none of these

Discrete-math / finite-math terminology
algorithm

analog data

binary relation

binary tree

Cartesian product

ceiling function

conjunction

construction

contradiction

database

disjunction

domain

existential quantifier

floor function

function

graph

implication

induction

integer

intersection

logic

natural number

negation

one-to-one

path

predicate

predicate logic

principle of

mathematical

induction

proper subset

propositional logic

range

rational number

real number

relation

relative complement

sequence

set theory

set

subset

tree

union

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 1 (Boolean algebras)

1. Propositional logic and Boolean algebras

1. An algebra is (a) a set of integers; (b) any set of values;

(c) a set of values and operations on them; (d) a set of

operations; (e) a set of functions

2. A Boolean algebra includes operations with the ____

property (a) transitive; (b) reflexive; (c) commutative;

(d) monotonic; (e) completeness

3. A Boolean algebra includes operations with the ____

property (a) transitive; (b) reflexive; (c) associative;

(d) monotonic; (e) completeness

4. A Boolean algebra includes operations with the ____

property (a) transitive; (b) reflexive; (c) distributive;

(d) monotonic; (e) completeness

5. Any set A, plus two binary operations on A with the

associative and other properties, is (a) the whole numbers;

(b) propositional logic; (c) set theory; (d) a Boolean algebra;

(e) any algebra

6. ((U),{, }) is (a) complete; (b) inconsistent;

(c) a Boolean algebra; (d) a temporal logic; (e) a set

of numbers

7. A set with the identity property has an element (a) 0, s.t.

(x  A) x + 0 = x; (b) 0, s.t. (x  A) x  0 = x; (c) 1, s.t.

(x  A) x + 1 = x; (d) that is identical to some other

element; (e) that is identical to all other elements

8. For algebra A, if x  A then x
–1

 is the ____ of x (a) identity

value; (b) complement; (c) negation; (d) reciprocal;

(e) none of these

9. Propositional logic is (a) complete; (b) inconsistent;

(c) a Boolean algebra; (d) a temporal logic; (e) a set

of numbers

10. If x is an element of a Boolean algebra, then (x
–1

)
–1

 = (a) 0;

(b) 1; (c) x; (d) x
–1

; (e) not x

11. An interpretation is (a) an assignment of truth values;

(b) the value of an assertion; (c) the meaning of a program;

(d) a formula; (e) none of these

12. An interpretation of a set of formulas in predicate logic is

(a) a logical inference; (b) a heuristic; (c) an assignment of

truth values to variables; (d) a theorem; (e) a truth value

13. The semantics of propositional logic specify (a) numeric

values; (b) results of operations; (c) rules for constructing

formulas; (d) the meaning of ; (e) none of these

14. (p  q) iff (a) p  q; (b) p  q; (c) p  q; (d) p  q;

(e) q  p

15. An assertion’s value is (a) true; (b) a symbol; (c) a number;

(d) true or false; (e) none of these

16. A truth table contains (a) variables; (b) formulas;

(c) values of formulas under one interpretation; (d) values of

formulas under all interpretations; (e) operations

17. If formulas  and  have the same truth table, then (a)   ;

(b)   ; (c)   ; (d)   ; (e)   

18. Satisfiability is ___ validity (a) weaker than;

(b) equivalent to; (c) stronger than; (d) a subset of;

(e) none of these

19. A sentence that is not true under any interpretation is

(a) complete; (b) incomplete; (c) consistent; (d) inconsistent;

(e) valid

20. A sentence that is true under all interpretation is (a) complete;

(b) incomplete; (c) consistent; (d) inconsistent; (e) valid

21. A formula is satisfiable if it has a(n) ____ under which it

is true (a) operation; (b) algorithm; (c) number;

(d) interpretation; (e) none of these

22. Satisfiability is ___ validity (a) weaker than;

(b) equivalent to; (c) stronger than; (d) a subset of;

(e) none of these

23. SAT is the problem of deciding whether a formula in

propositional logic (a) holds; (b) has a set of variable

assignments that make it true; (c) is not a contradiction;

(d) is syntactically correct; (e) is probably true

24. The sentence,  |=  (in every interpretation where  is true,

 is true), is an instance of (a) entailment; (b) negation;

(c) validity; (d) satisfiability; (e) falsehood

25. Inference rules maintain (a) completeness; (b) consistency;

(c) validity; (d) satisfiability; (e) falsehood

26. An inference rule that never produces contradictions is

(a) complete; (b) incomplete; (c) inconsistent; (d) sound;

(e) useless

27. (p  (p  q))  q is (a) false; (b) Modus Ponens;

(c) inconsistent; (d) not always true; (e) none of these

28. A validity-maintaining procedure for deriving sentences in

logic from other sentences is a(n) (a) proof; (b) theorem;

(c) algorithm; (d) inference rule; (e) inference chain

29. p iff q means (a) p  q  q  p; (b) p  q  q  p;

(c) p  q but not necessarily q  p; (d) q  p but not

necessarily p  q; (e) none of these

30. Inference is (a) commutative; (b) transitive; (c) undecidable;

(d) time dependent; (e) associative

31. The property asserted by (p  q  q  r)  (p  r) is

(a) commutative; (b) transitive; (c) undecidable;

(d) time dependent; (e) associative

32. The property asserted by (p = q  q = r)  (p = r) is

(a) commutative; (b) transitive; (c) undecidable; (d) time

dependent; (e) associative

2. Predicate logic

1. Quantifiers ____ variables (a) negate; (b) change; (c) bind;

(d) define; (e) give values to

2. To bind a variable in an expression like Odd(x), what are

used? (a) arithmetic operators; (b) logical operators;

(c) quantifiers; (d) predicates; (e) negations

3. When multiple quantifiers are the same, then then the

meaning of a predicate logic sentence (a) depends on order;

(b) is ambiguous; (c) is independent of order;

(d) is determined by arithmetic operators; (e) is determined

by logical operators

4. When multiple quantifiers differ, then the meaning of a

predicate logic sentence (a) depends on order;

(b) is ambiguous; (c) is independent of order;

(d) is determined by arithmetic operators; (e) is determined

by logical operators

5. Predicate logic is a(n) (a) algorithm; (b) language of

assertions; (c) language of arithmetic expressions;

(d) set of symbols; (e) set of operations

6. (x) x = x + 1 is (a) a numeric expression; (b) false; (c) true;

(d) an assignment; (e) none of these

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

7. (x) x = x + 1 is (a) a numeric expression; (b) false; (c) true;

(d) an assignment; (e) none of these

8. Quantifiers ____ variables for meaningful use (a) give

values to; (b) take values from; (c) bind; (d) assign;

(e) declare

9. Predicate calculus extends propositional logic with

(a) inference; (b) negation; (c) implication; (d) variables;

(e) quantifiers

10. A formula in logic is valid if (a) it is true for some

interpretation; (b) it is true for all interpretations; (c) it is true

for no interpretation; (d) it is an axiom; (e) it is not disproven

11. A formula in logic is satisfiable if (a) it is true for some

interpretation; (b) it is true for all interpretations; (c) it is true

for no interpretation; (d) it is an axiom; (e) it is not disproven

12. A formula in logic is inconsistent if (a) it is true for some

interpretation; (b) it is true for all interpretations; (c) it is true

for no interpretation; (d) it is an axiom; (e) it is not disproven

13. Inference rules enable derivation of (a) axioms;

(b) other inference rules; (c) new true assertions; (d) percepts;

(e) none of these

14. Inference rules maintain (a) completeness; (b) consistency;

(c) validity; (d) satisfiability; (e) falsehood

15. An inference rule that never produces contradictions is

(a) complete; (b) incomplete; (c) inconsistent; (d) sound;

(e) useless

3. Some proof methods

1. Existentially quantified assertions may be proven by

(a) contradiction; (b) induction; (c) showing an instance;

(d) diagonalization; (e) counter-example

2. Forward chaining (a) is goal driven; (b) starts with an

assertion to be proven; (c) is data driven; (d) is not sound;

(e) none of these

3. Backward chaining (a) is goal driven; (b) is sound;

(c) generates all possible entailments; (d) applies modus

ponens; (e) starts with the data at hand

4. An algorithm that determines what substitutions are needed to

make two sentences match is (a) resolution; (b) inference;

(c) unification; (d) contradiction; (e) nonexistent

5. Unification is (a) an algorithm for making substitutions so

that two sentences match; (b) a proof method;

(c) an inference rule; (d) a theorem;

(e) a knowledge-representation scheme

6. Resolution proof uses (a) forward chaining; (b) contradiction;

(c) abduction; (d) unification; (e) statistics

See also questions on induction in Introduction topic, subtopic 2.

4. Inductive proofs of correctness

1. Which are sufficient conditions for algorithm correctness?

(a) good programming methodology; (b) customer

satisfaction; (c) approval by QA; (d) output is specified

function of input; (e) program always halts and output is

specified function of input

2. Total correctness is partial correctness plus (a) termination;

(b) proof; (c) loop invariant; (d) postcondition; (e) efficiency

3. An assertion is (a) a comment that describes what happens in

an algorithm; (b) a command; (c) a claim about the state of

the computation; (d) an algorithm; (e) none of these

4. The purpose of assertions in formal verification is to

(a) help establish that code is correct; (b) describe what

happens in a program; (c) guarantee that a program halts;

(d) catch exceptions; (e) all the above

5. A loop invariant is asserted to be true (a) throughout the loop

body; (b) at the beginning of every iteration of a loop;

(c) is the same as the postcondition; (d) all the above;

(e) none of the above

6. An assertion that is true at the start of each iteration of a loop

is (a) a precondition; (b) a loop invariant; (c) a postcondition;

(d) a loop exit condition; (e) none of these

7. A loop invariant asserts that (a) the precondition holds;

(b) the postcondition holds; (c) a weaker version of the

postcondition holds; (d) the algorithm terminates;

(e) none of these

8. A postcondition (a) is asserted to be true before an algorithm

executes; (b) is asserted to be true at the beginning of every

iteration of a loop; (c) is asserted to be true after an algorithm

executes; (d) all the above; (e) none of the above

9. A precondition is asserted to be true (a) before an algorithm

executes; (b) at the beginning of every iteration of a loop;

(c) after an algorithm executes; (d) all the above; (e) none of

the above

10. A Hoare triple consists of (a) precondition, loop invariant,

postcondition; (b) program, loop invariant, postcondition;

(c) precondition, program, postcondition; (d) proof, loop

invariant, program; (e) none of these

11. A Hoare triple specifies (a) loop invariant and postcondition;

(b) precondition, program and postcondition; (c) program and

postcondition; (d) performance requirements; (e) none

of these

12. <> P <> is a (a) precondition; (b) loop invariant;

(c) postcondition; (d) Hoare triple; (e) first-order

logic formula

13. In <> P <>,  is a (a) precondition; (b) loop invariant;

(c) postcondition; (d) Hoare triple; (e) Boolean literal

14. In <> P <>,  is a (a) precondition; (b) loop invariant;

(c) postcondition; (d) Hoare triple; (e) Boolean literal

15. In <> P <ψ>, P is a (a) precondition; (b) loop invariant;

(c) postcondition; (d) program; (e) propositional-

logic formula

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for Topic 1 (Boolean algebras)
algebra

arity

assertion

automated reasoning

backward chaining

base case

Boolean algebra

Boolean variable

complement

conjunction

constructive proof

De Morgan’s Laws

disjunction

entailment

existential quantifier

first-order logic

forward chaining

Hoare triple

idempotent

identity

implication

induction principle

inductive case

inference

interpretation

loop invariant

model

modus ponens

modus tollens

negation

partial correctness

postcondition

precondition

predicate

predicate logic

proof procedure

property

propositional logic

resolution

satisfiability

termination

total correctness

transitivity

truth assignment

truth tables

unification

universal quantifier

validity

Objectives-related questions on topic 1

1.1a Describe the syntax of propositional logic
(essential)

1. Describe the literals in propositional logic.

2. Describe the operators in propositional logic.

3. Describe the syntax of propositional-logic formulas.

4. What may appear in parentheses in a

propositional-logic formula?

(5-10) Why is each of the following not a propositional-

logic formula?

5. p  q

6.  p q

7. p   q

8. p  q 

9. p  q 

10. p ( q)

1.1b Apply the semantics of propositional logic
(essential)

Write truth tables for the following assertions:

1. (p  q)  r

2. (p  q)  r

3. (p  q)  r

4. (p  q)  r

5. p  (q  r)

1.1c Apply logical inference(essential)

Write simpler propositional-logic formulas, equivalent to the

following, using Modus Ponens, Modus Tollens, or the definition

of implication; and naming the rule you used. You may

abbreviate words with their initials; e.g., “c” =” clouds”.

1. (q  r)  q

2.  p  (q  p)

3. ( r  q)  r

4. q  (q  p)

5. Dark clouds mean it will rain; and I see dark clouds.

6. There’s no class on holidays. There’s class today.

1.1d Explain Boolean algebras (essential)

1. What are the features of a Boolean algebra? Discuss in

relation to a logic.

2. What are the identity elements in propositional logic? Relate

to operations.

3. What is the complement of true in propositional logic?

Relate to operations.

4. What are the identity elements for two operators in

propositional logic? What mathematical structure has

identity elements and complements?

Defend or refute:

5. Certain basic set operations together form a Boolean algebra.

6. Propositional logic is a Boolean algebra.

7. The natural numbers form the basis for a Boolean algebra.

1.2a Use a quantifier (essential)

Use quantifiers and predicates to express the following in

predicate logic.

1. Some athletes are fast.

2. All athletes are strong.

3. Some fast people are athletes.

4. All strong people are athletes.

5. Some athletes are not tall.

6. All tall athletes are strong.

7. All fast strong people are athletes.

8. Some strong people aren’t athletes.

1.2b Distinguish predicate from
propositional logic (essential)

1. What two features distinguish predicate logic from

propositional logic?

2. Name and describe the sorts of assertions that predicate logic

can express that propositional logic cannot.

3. Describe the meanings of , , and P(x), and name the logic

that supports them.

4. Describe some limitations of propositional logic and state

how another logic overcomes them.

5. Describe the quantifiers and how they address a limitation of

propositional logic.

1.3a Write a direct proof (essential)

Use direct proof to show that

1. the product of any natural number and an even natural

number is even.

2. the difference between any two even natural numbers

is even.

3. for any m  3, m
2
 – 4 is non-prime.

4. the sum of an even natural number and an odd one is odd.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

5. for any integers a, b, the difference between a
2
 and b

2
 is an

odd number.

1.3b Write a proof by construction (essential)

Prove by construction, giving the predicate being proven.

1. 24 is divisible by both 2 and 6.

2. 20 is divisible by both 4 and 5.

3. 10 is the sum of two odd numbers.

4. 13 is the sum of an even number and an odd number.

5. 22 is the sum of two even numbers.

6. There exist two consecutive numbers that add up to 17.

1.3c Write a proof by contradiction (essential)

Prove by contradiction that:

1. No largest integer exists.

2. No smallest positive real number exists.

3. The sum of two even numbers is always an even number.

4. The sum of two odd numbers is always an even number.

5. The sum of an even and an odd number is always odd.

6. The difference between an even and an odd number is odd.

1.3d Describe the principle of
mathematical induction (essential)

1. Describe the two parts of an inductive proof.

2. What is the principle of mathematical induction?

3. What sorts of theorems can the principle of mathematical

induction be used to prove?

4. In an inductive proof, what must be shown, other than P(0)?

5. Explain the role of P(n)  P(n + 1) in some

mathematical proofs.

1.3e Use induction to prove a theorem
about numbers (essential)

Prove by mathematical induction that for all natural numbers

greater than zero,

1. n
2
 + n = (2 + 4 + 6 + … + 2n)

2. ∑
 = (n

2
 + n)/2

3. (n
 3
 + 2n) is divisible by 3

4. 1 + 6 + 11 + … + (5n – 4) = (5n
2
 – 3n) / 2

5. 1 + 3 + 5 + . . . + (2n – 1) = n2

6. 2
0
 + 2

1
 + 2

2
 + … + 2

n
 = 2

n+1
 – 1

1.4a Explain concepts of algorithm correctness
(priority)

1. What is an assertion, about the state of a repetitive process,

that holds at the start of the process and helps to establish

that the process spec is satisfied? How is it used?

2. What are three classes of comments that help establish that

the spec of a procedure is satisfied? For each, state where the

comment should appear in the code or pseudocode.

3. For an algorithm, what is the likely relationship between a

loop invariant and a postcondition?

4. How are loop invariants related to induction?

5. Distinguish partial from total correctness.

6. Identify the components of <> P <ψ> as discussed in class,

and the meaning and purpose of this.

1.4b Use induction to prove an algorithm correct*

By use of preconditions, postconditions, and loop invariants, prove that the pseudocode below is correct.

1. Count-spaces(s)
> Returns number of
> spaces in string.
y  0
i  1
while i  length(s) do
 if s[i] = ‘ ‘
 y  y + 1
 i  i + 1
return y

2. Search-stack (S, key)
> Tells whether stack S
> contains key

 found  false
 while not empty(S)

 test  Pop(S)
 if test = key

 found  true
 return found

3. All-same (A)
> Tells whether all
> elts of A are same

y true

for i  2 to |A|
 If A[i] = A[i – 1]

 y false
return y

4. Quotient (a, b)

 > Performs integer division
y  0
s  a – b
while s > 0
 s  s  b
 y  y + 1
return y

5. Largest-to-right (A)
> Returns A after moving the
> largest element to right.

largest  1

for i  2 to |A| do
 if A[i] > A [largest]

 largest  i
A[largest] with A[|A|]
return A

6. Fact (x)
 > Computes factorial:

y  1

i  1
while i < x

 y  i  y

 i  i + 1
return y

8. Index-of-largest (A)x
> Returns index of the
> largest element of A

y  1

for i  1 to |A| – 1)
 if A[i] < A[y]

 y  i

 i  i + 1
return y

7. Max (A)
 > Returns largest elt of A

y  A[1]

i  1
while i < |A|
 if y < A[i]

 y  A[i]

 i  i + 1
 return y

9. Pow (a, b)
> returns ab

y  a

i  1
while i < b

 y  a  y

 i  i + 1
return y

10. Sum (A)
> Computes sum of
> array elements

 y  0

i  1

while i  |A|

 y  y + A[i]

 i  i + 1
return y

11. Product (x, y)f
>Performs multiplication

result  0

For i  1 to x

 result  result + y
Return result

12. Which-sort (A)

for i  size(A) down to 2 do

 A Largest-to-right (A[1.. i])
 (You may assume that Largest-

to-right (#5 above) is correct).

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 2 (Sets, relations)

1. Properties of sets

1. For sets A and B, A  B = (a) A; (b) B; (c) B  A; (d) A  B;

(e) A  B

2. For sets A and B, (A  B) (a)  A; (b)  A; (c)  B; (d)  B;

(e) = A  B

3. (A  B)  (B  C)  (A  C) is a(n) ___ property;

(a) associative; (b) commutative; (c) identity; (d) transitive;

(e) inverse

4. (A  B)  C = A  (B  C) is a(n) property (a) associative;

(b) commutative; (c) identity; (d) transitive; (e) inverse

5. A  A
c
 = (a) U; (b) A; (c) A

c
; (d) ; (e) none of these

6. (A
c
)

c
 = (a) U; (b) A; (c) U – A; (d) ; (e) none of these

7. A  A
c
 = (a) U; (b) A; (c) U – A; (d) ; (e) none of these

8. A   = (a) U; (b) A; (c) U – A; (d) ; (e) none of these

9. A   = (a) U; (b) A; (c) U – A; (d) ; (e) none of these

10. A  U = (a) U; (b) A; (c) U – A; (d) ; (e) none of these

11. A  U = (a) U; (b) A; (c) U – A; (d) ; (e) none of these

12. To prove that sets A and B are equal, prove that

(a) A  B  B  A; (b) A  B  B  A; (c) A  B  B  A;

(d) A  B  B  A; (e) none of these

13. x  A
c
 implies (a) x  A; (b) x = A

c
; (c) x  A; (d) A = ;

(e) none of these

14. Sets A and B are disjoint iff A  B = (a) A; (b) B; (c) U;

(d) ; (e) none of these

15. If {A1, A2, …} partitions A, then A1, A2, … (a) are the same;

(b) are disjoint; (c) are in a subset relation to each other;

(d) have a non-null intersection; (e) none of these

2. Relations

1. In a symmetric relation R over A, (a) ( x  A) xRx;

(b) ( x, y  A) xRy  yRx;

(c) (x,y,z  A) xRy  yRz  xRz; (d) all of these; (e) none

of these

2. In a transitive relation R over A, (a) ( x  A) xRx;

(b) ( x, y  A) xRy  yRx; (c) (x,y,z  A) xRy  yRz 

xRz; (d) all of these; (e) none of these

3. In a reflexive relation R over A, (a) ( x  A) xRx;

(b) ( x, y  A) xRy  yRx; (c) (x,y,z  A) xRy  yRz 

xRz; (d) all of these; (e) none of these

4. In a reflexive relation on A (a) each element of A is related to

itself; (b) each ordered pair (a, b) is matched by (b, a);

(c) if aRb and bRc then aRc; (d) the diagonal of the matrix is

empty; (e) none of these

5. In a symmetric relation on A (a) each element of A is related

to itself; (b) each ordered pair (a, b) is matched by (b, a);

(c) if aRb and bRc then aRc; (d) the diagonal of the matrix is

empty; (e) none of these

6. In a transitive relation on A (a) each element of A is related to

itself; (b) each ordered pair (a, b) is matched by (b, a);

(c) if aRb and bRc then aRc; (d) the diagonal of the matrix is

empty; (e) none of these

7. If R is an antisymmetric relation over A, and if (x, y)  R,

then (a) x  A; (b) y  A; (c) (y, x)  R; (d) x = y; (e) x  y

8. Relations that are reflexive, symmetric, and transitive are

(a) orderings; (b) partitions; (c) equivalence relations;

(d) functions; (e) nonexistent

9. An equivalence relation is induced by (a) inference;

(b) quantifiers; (c) commutativity; (d) numeric equality;

(e) a partition

10. Equivalence relations are (a) induced by partitions; (b) equal;

(c) asymmetric; (d) decidable; (e) intersections

3. Functions

1. A reflexive transitive closure is obtained by (a) applying a

function once; (b) applying a function twice; (c) applying a

function repeatedly; (d) taking the intersection of two sets;

(e) taking the union of two sets

2. If y = f (x) then (a) f is the image of y under x; (b) f is the

image of y under x; (c) x is the image of f under y; (d) y is the

image of x under f; (e) (c) y is the image of f under x

3. If IA is the identity function for set A, then (x  A) IA (x) =

(a) 0; (b) 1; (c) x; (d) A; (e) IA

4. A polynomial is a (a) linear function;

(b) exponential function; (c) sum of power functions;

(d) numeric value; (e) predicate

5. A bijection is a(n) (a) partition; (b) binary number;

(c) one-to-one correspondence; (d) proof; (e) none of these

6. Any bijection has a(n) (a) identity value; (b) inverse function;

(c) complement; (d) intersection; (e) transition

7. ____ injections are bijections (a) all; (b) some; (c) no;

(d) binary; (e) none of these

8. ____ surjections are bijections (a) all; (b) some; (c) no;

(d) binary; (e) none of these

9. ____ bijections are injections (a) all; (b) some; (c) no;

(d) binary; (e) none of these

10. ____ bijections are surjections (a) all; (b) some; (c) no;

(d) binary; (e) none of these

11. ____ surjections are injections (a) all; (b) some; (c) no;

(d) binary; (e) none of these

12. ____ injections are surjections (a) all; (b) some; (c) no;

(d) binary; (e) none of these

13. A surjection maps (a) from all elements of its domain;

(b) no two values to the same result; (c) randomly; (d) to all

elements of its range; (e) none of these

14. A relation in which every left-hand member is paired with not

more than one right-hand member is (a) transitive;

(b) symmetric; (c) reflexive; (d) a function; (e) none of these

4. Sequences and languages

1. A string is a (a) collection; (b) set; (c) tree; (d) sequence;

(e) list

2. A language is a (a) string; (b) number; (c) set of numbers;

(d) sequence of strings; (e) set of strings

3. For array A, |A| is (a) the absolute value of the sum of A’s

elements; (b) the absolute value of A; (c) the smallest element

of A; (d) the number of elements in A; (e) none of these

4. An infinite sequence may be defined (a) by enumeration;

(b) only by formula for n
th

 term; (c) only recursively;

(d) either by formula or recursively; (e) in propositional logic

5. When a function returns , it (a) returns 0; (b) returns an

infinite quantity; (c) is defined; (d) is undefined;

(e) is random

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

6. When a function returns , it (a) returns 0; (b) returns an

infinite quantity; (c) is defined; (d) is undefined;

(e) is random

7. A sequence over set A is (a) a relation  (A  A);

(b) a function f : N  A; (c) an element of A  A;

(d) a language; (e) none of these

8. The sum of elements of a sequence is de4noted using (a) ;

(b) ; (c) ; (d) ; (e) 

9. Finite sequences may be represented in computer memory

using (a) integers; (b) real numbers; (c) arrays; (d) trees;

(e) classes

10. In our discussion of languages,  represents (a) a function;

(b) an alphabet; (c) a symbol; (d) a string; (e) none of these

11. In our discussion of languages,  is (a) a function;

(b) an alphabet; (c) a symbol; (d) a string; (e) none of these

12. An alphabet is a(n) (a) number; (b) string; (c) finite set;

(d) symbol; (e) infinite set

13.  is by convention (a) finite; (b) countable; (c) uncountable;

(d) a sequence; (e) none of these

14. 0
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of

length k; (e) all strings over 

15. 1
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of

length k; (e) all strings over 

16. 2
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of

length k; (e) all strings over 

17. k
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of

length k; (e) all strings over 

18. *
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of

length k; (e) all strings over 

19. *
 is (a) a number; (b) a symbol; (c) an alphabet;

(d) a language; (e) none of these

20. Concatenation of languages is (a) L1 L2; (b) L
*
; (c) L1  L2;

(d) L1  L2; (e) none of these

21. Iteration of language is (a) L1 L2; (b) L
*
; (c) L1  L2;

(d) L1  L2; (e) none of these

22. Boolean expressions are defined (a) selectively;

(b) iteratively; (c) recursively; (d) transitively; (e) reflexively

23. The language of Boolean expressions is (a) free-form;

(b) a set of numbers; (c) a set of recursively-defined strings;

(d) the same as regular expressions; (e) a set of proofs in

predicate logic

24. An alphabet is (a) finite; (b) infinite; (c) finite or infinite;

(d) uncountable; (e) none of these

25. A language is (a) finite; (b) infinite; (c) finite or infinite;

(d) uncountable; (e) none of these

26. Regular expressions may be constructed by (a) concatenation,

selection, and subtraction; (b) addition and iteration;

(c) addition, selection, and iteration; (d) concatenation;

(e) concatenation, selection, and iteration

5. Recurrence relations

1. The well-ordering principle asserts that if all elements of a set

exceed some value, k, then (a) the set may be arranged in

order; (b) a sorting algorithm will work on the set;

(c) there exists a minimal element of the set; (d) the set is

finite; (e) the value k is in the set

2. The Fibonacci numbers are an instance of a(n) (a) finite set;

(b) recursively defined sequence; (c) undecidable set;

(d) inductive proof; (e) none of these

3. Peano defined N (a) by induction; (b) by contradiction;

(c) by enumeration; (d) by encryption; (e) as a subset of R

4. Any computable function can be defined (a) by induction;

(b) by contradiction; (c) by enumeration; (d) by encryption;

(e) as a subset of R

5. A recurrence defines (a) a set of natural numbers;

(b) a logical formula; (c) a computable function;

(d) an undecidable problem; (e) none of these

6. A recursive definition (a) uses a while loop; (b) lists all

possibilities; (c) uses the term defined; (d) is impossible;

(e) is inefficient

7. Recurrences are used in (a) input specification; (b) proofs of

correctness; (c) time analysis; (d) type checking; (e) none

of these

8. Recurrences (a) are a form of pseudocode;

(b) suggest algorithms but not running time;

(c) suggest running time but not algorithms;

(d) suggest running time and algorithms; (e) none of these

9. Recurrences may help in time analysis if we find (a) count of

iterations of while loop; (b) clock readings; (c) exit condition;

(d) depth of recursion; (e) none of these

10. Recurrence relations enable us to use _____ to obtain running

time (a) empirical tests; (b) loop nesting; (c) base-case

running time; (d) depth of recursion; (e) base-case running

time and depth of recursion

11. The more time-consuming part of the execution of an

algorithm defined by a recurrence is (a) the base step;

(b) the recursive step; (c) calculation of the time function;

(d) proof of correctness; (e) design

6. Big-O, , 

1. Vector traversal is O(___) (a) 1; (b) lg n; (c) n; (d) n
2
; (e) 2

n

2. A recursive-case running time of (1 + T(n1)) indicates

____ time (a) constant; (b) logarithmic; (c) linear;

(d) quadratic; (e) exponential

3. Function g is an upper bound on function f iff for all x,

(a) g(x) ≤ f (x); (b) g(x) ≥ f (x); (c) g = O(f); (d) f = (g);

(e) none of these

4. Function g is a lower bound on function f iff for all x,

(a) g(x) ≤ f (x); (b) g(x) ≥ f (x); (c) f = O(g); (d) g = (f);

(e) none of these

5. Big-Omega notation expresses (a) tight bounds;

(b) upper bounds; (c) lower bounds; (d) worst cases;

(e) none of these

6. Big-O notation expresses (a) tight bounds; (b) upper bounds;

(c) lower bounds; (d) best cases; (e) none of these

7. Theta notation expresses (a) tight bounds; (b) upper bounds;

(c) lower bounds; (d) worst cases; (e) none of these

8. T(n) = O(f (n)) means that (a) algorithm  computes

function f; (b) algorithm  produces a result in time at least

f (n) for inputs of size n; (c) algorithm  produces a result in

time not greater than f (n) for inputs of size n;

(d) Algorithm T runs in time ; (e) Algorithm f computes

function T on data 

9. log2n  O(sqrt(n)) means that the logarithm function _____

the square root function (a) grows as fast as; (b) grows no

faster than; (c) grows at least as fast as; (d) is in a mapping of

real numbers defined by; (e) regardless of parameter produces

a result smaller than

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

10. Quadratic time is faster than (a) O(1); (b) O(lg n); (c) O(n
2
);

(d) O(n
3
); (e) none of these

11. The theorem, T1(n)  O(g1(n))  T2(n)  O(g2(n)) 

T1(n) + T2(n)  O(max{g1(n), g2(n)}) says that (a) the slower

and faster parts of an algorithm together set its running time;

(b) the faster part of an algorithm dominates in determining

running time; (c) the slower part of an algorithm dominates in

determining running time; (d) Algorithm T computes

functions g1 and g2; (e) Algorithm T finds the maximum of

g1 and g2

12. When the running time for the base case of a recursive

algorithm is O(n) and the remaining part of input to process is

reduced by one at each recursive step, the total running time

is (a) O(1); (b) O(lg n); (c) O(n lg n); (d) O(n); (e) O(n
2
)

13. In a recursive algorithm, when the running time for the base

case is O(1) and remaining work of an algorithm is reduced

by one at each step, the running time is (a) O(1); (b) O(lg n);

(c) O(n lg n); (d) O(n); (e) O(n
2
)

14. A recursive-case running time of (n + T(n1)) indicates ____

time (a) constant; (b) logarithmic; (c) linear; (d) quadratic;

(e) exponential

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for topic 2 (Sets, relations, recurrences)
antisymmetric relation

arity

array

associative property

big-O notation

big-omega notation

bijection

Cartesian product

co-domain

complement

contradiction

disjoint sets

distributive property

equivalence class

equivalence relation

idempotent property

identity function

image of x under f

index

injection

inverse

language

linear function

partial order

partition

Peano’s axioms

power function

proper subset

range

recurrence relation

reflexive relation

reflexive transitive

closure

relation

sequence

surjection

symmetric relation

theta notation

transitive relation

universal set

upper bound

Problems to assess outcomes for topic 2

2.1a Explain or apply a concept
in set theory (essential)

1. What is the universal set?

2. What is the complement of a set?

Explain the value and meaning of

3. (B  A)

4. (B  A)

5. A  B

6. A  B

7. A – B

8. A  

9. A  

Let A = {1, 3, 5, 7}, B = {3, 4, 5}.

Enumerate:

10. A  B {3,5}

11. A  B {1,3,4,5,7}

12. A – B {1, 7}

2.1b Prove a theorem in set
theory (essential)

Prove that for all sets A, B and C,

1. (B – A)  B  A
c

2. (A  C  B  C)  (A  B)  C

3. (A – B)  (C – B) = (A  C) – B

4. (A  B)  (A  C)  (B  C)

5. A   = 

6. A   = A

7. if A  B then B
c
  A

c

2.2a Describe a relation
(essential)

1. Describe a relation between {1, 2}

and {a, b, c}.

2. What is meant by a relation between

sets A and B?

3. What is meant by a relation on set

S = {a, b, c, d}?

4. Enumerate the greater-than relation

on {1, 2, 3}.

5. What is the reflexive transitive closure

of a relation?

6. For sets A, B, describe (A  B).

7. What is the largest relation on set A?

2.2b Apply the notion of an
equivalence relation*

(1-4) Is the relation below an equivalence

relation? Justify the three parts of

your answer.

1. {(1, 2), (2, 1), (1, 3), (3, 1)}

2. {(0, 0), (0, 1), (0, 2), (1, 2), (2,0)}

3. {(1, 2), (2, 1), (2, 3), (3, 2)}

4. {(1, 1), (2, 2), (3, 3), (1, 2), (2,1)}

5. What is a reflexive relation?

6. What is a symmetric relation?

7. What is a transive relation?

8. What relations are

equivalence relations?

9. Describe and name the set of relations

that partition sets.

2.3a Describe a function
(essential)

1. Distinguish relations from functions.

2. What are the polynomial functions?

3. What are the exponential functions?

4. Distinguish partial from

total functions.

5. Distinguish sets from functions.

6. Distinguish the domain of a function

from its range.

7. What is the relationship of f : A  B

to A × B ?

8. What are the domain and the range of

the square-root function?

9. Explain how the arithmetic operators

are functions – of what arity?

10. Distinguish predicates from functions.

11. Identify and give an example of

f : N  {F, T}

Is the following a function? If not,

why not?

12. {(1, 2), (2, 1), (2, 3), (3, 1)}

13. {(0, 0), (1, 1), (2, 2), (2, 3)}

2.3b Define a class of functions

1. What is the inverse of an

exponential function?

2. What is the identity function?

3. What is the inverse of the square-

root function?

4. For f (x), what is the inverse of f, and

what property does it have with respect

to f (x)?

5. Distinguish injections

from surjections.

6. What is a bijection?

2.4a Use a function to define a
sequence (essential)

1. Explain how a sequence is a function.

Write a definition of the function that

specifies the following sequence:

2. the powers of 2

3. the numbers that are each the sums of

the linear series from 1 to n

4. the squares of natural numbers

5. the numbers that are each the product

of all the whole numbers from 1 to n

2.4b Define a language
(essential)

Using a regular expression, define the

language of strings over {0, 1} in which

1. the second symbol is a 1.

2. two consecutive 0s occur.

3. an even number of 1’s occur.

4. the last symbol is 0.

5. no two consecutive symbols are

the same.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

2.5a Describe a recursively
defined function (essential)

1. Describe the factorial function. What

is recursive about it?

2. What is the name of a particular

mathematical technique or notation,

for defining a function, that

converts straightforwardly into code

or pseudocode?

What are the following? What is

recursive about them?

3. f (a,b) =

  0 if a= 0

  b + f (a1,b) otherwise

4. h (a,b) =

  0 if a= 0

  b  h (a1,b) otherwise

5. j (a) =

  0 if a= 0

  2 + j (a1) otherwise

6. g(a,b) =

  0 if a= 0

  b + g(a2, 2b) if a is odd

  g(a2, 2b) if a is even

2.5b Write a recurrence to
define a function

Use a recurrences to define the

following functions:.

1. Sum (A)
> Computes sum of
> array elements

 y  0

i  1

while i  |A|

 y  y + A[i]

 i  i + 1
return y

2. Product (x, y)f
>Performs multiplication

result  0

For i  1 to x

 result  result + y
Return result

3. Max (A)
 > Returns largest elt of A

y  A[1]

i  1
while i < |A|
 if y < A[i]

 y  A[i]

 i  i + 1
 return y

4. Pow (a, b)
> returns ab

y  a

i  1
while i < b

 y  a  y

 i  i + 1
return y

5. Fact (x)
 > Computes factorial:

y  1

i  1
while i < x

 y  i  y

 i  i + 1
return y

2.6a Define O, , and  notation

1. What is the main notation for

expressing the complexity of

algorithms as tight bounds? How does

it compare with the other commonly

used notations?

2. For function f, define and

describe O(f).

3. What is the main notation for

expressing the complexity of

algorithms as upper bounds? How

does it compare with the other

commonly used notations?

4. For function f, define and

describe (f).

5. What is the main notation for

expressing the complexity of

algorithms as lower bounds? How

does it compare with the other

commonly used notations?

6. For function f, define and

describe (f).

7. Use two simple formulas to show the

relation among O, , and  notations.

(Hint: if f (n)  (g(n)),

what follows?)

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 3 (Graphs)

1. Graphs

1. A graph is (a) a set of integers; (b) a set of vertices;

(c) a set of vertices and a set of edges; (d) a set of edges;

(e) a set of paths

2. The degree of a vertex in a graph is (a) the number of vertices

in its graph; (b) the number of edges in its graph;

(c) the number of paths; (d) the number of distinct connected

subgraphs; (e) the number of other vertices adjacent to it

3. A graph is defined in part by (a) exactly one ordered pair of

vertices; (b) a relation; (c) a cycle; (d) one path joining each

pair of vertices; (e) none of these.

4. A series of edges that connect two vertices is called

(a) a path; (b) a cycle; (c) a connection; (d) a tree;

(e) a collection

5. To design a communications network that joins all nodes

without excessive lines, we must find a (a) path;

(b) connectivity number; (c) minimal spanning three;

(d) expression tree; (e) search tree

6. A repeating series of edges that form a path from a vertex to

itself is (a) a spanning path; (b) a cycle; (c) a connection;

(d) a tree; (e) an edge

7. A weighted graph has an adjacency matrix that is (a) integers;

(b) vertices; (c) real numbers and ; (d) booleans; (e) none

of these

8. The prerequesite relationships among required courses in the

Computer Science major form a (a) binary tree;

(b) linked list; (c) directed acyclic graph; (d) weighted graph;

(e) spanning tree

9. A tree is a graph that is (a) connected and cyclic;

(b) connected and acyclic; (c) unconnected and cyclic;

(d) unconnected and acyclic; (e) none of these

10. A graph may be fully represented by (a) its vertices;

(b) its edges; (c) an adjacency matrix; (d) the degrees of its

vertices; (e) none of these

11. The breadth-first search (a) uses a queue; (b) uses a stack;

(c) searches an array; (d) searches a tree; (e) none of these

12. The depth-first search (a) uses a queue; (b) uses a stack;

(c) searches an array; (d) searches a tree; (e) none of these

2. Graph isomorphism

1. Graph path search involves finding a (a) set of vertices;

(b) sequence of vertices; (c) set of edges; (d) minimal set of

edges; (e) none of these

2. Two graphs are isomorphic iff (a) they have the same

numbers of vertices and edges; (b) they have the same

degrees; (c) bijections of a special kind exist between their

sets of vertices and edges; (d) they have no vertices in

common; (e) one is a subgraph of the other

3. Graphs for which bijections of a special kind exist between

their sets of vertices and edges are (a) nested; (b) transitive;

(c) undecidable; (d) disjoint; (e) isomorphic

4. Graphs that have the same structure are (a) nested;

(b) transitive; (c) undecidable; (d) disjoint; (e) isomorphic

5. Graph isomorphism invariant properties include

(a) having the same numbers of vertices and edges;

(b) satisfiability; (c) reachability; (d) well ordering;

(e) well foundedness

3. Transition systems

1. A transition system is defined by (a) a set of states and a

relation on them; (b) a set of points and a mapping among

them; (c) a set of symbols and rules for sequencing them;

(d) a set of strings; (e) none of these

2. A transition system is (a) an interactive system; (b) a labeled

graph denoting states and transitions; (c) an algorithm;

(d) a set of equations; (e) a language

3. A state-transition system with probabilistic transitions is a(n)

(a) semantic net; (b) Bayesian net; (c) finite automaton;

(d) Turing machine; (e) Markov chain

4. Transitions that are probability functions of a current state

characterize (a) finite automata; (b) Bayesian networks;

(c) schemas; (d) Markov models; (e) none of these

5. In our discussion of DFAs,  is (a) a function;

(b) an alphabet; (c) a symbol; (d) a string; (e) none of these

6. The reflexive transitive closure of  maps from (a) states to

states; (b) states and symbols to states; (c) states and strings

to states; (d) states and symbols to symbols; (e) none of these

7. Whether a certain string belongs to the language recognized

by a finite automaton is determined by (a) the output;

(b) the transition; (c) whether the automaton terminates;

(d) whether the automaton terminates in an accepting state;

(e) none of these

8. For each finite automaton there exist(s) ___ corresponding

language(s) (a) no; (b) one; (c) two; (d) some finite number

of; (e) infinitely many

9. The Turing machine model is said to capture (a) regular

languages; (b) interaction; (c) efficient computation;

(d) algorithmic computation; (e) all of these

10. A Turing machine has ____ storage (a) random-access;

(b) limited; (c) unbounded; (d) stack; (e) queue

11. A Turing machine (a) lacks an alphabet; (b) has tape instead

of states; (c) can compute any mathematical function;

(d) stores data on a tape; (e) none of these

4. Structural induction

1. Structural induction may be used to show properties of

(a) sets of integers; (b) real numbers; (c) sets of strings;

(d) algorthms; (e) none of these

2. We may use _____ to prove that all elements of a certain

language have equal numbers of left and right parentheses

(a) contradiction; (b) enumeration; (c) counter example;

(d) structural induction; (e) strong induction

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for topic 3 (Graphs and transition systems)
acyclic graph

adjacency matrix

computation tree

Computation Tree Logic

connected graph

cycle

degree

digraph

edge

finite automaton

finite transducer

graph

isomorphism

Kripke structure

Markov assumption

Markov decision process

Markov model

matrix

minimal spanning tree

model checking

path

pushdown automata

reactive system

reflexive transitive

closure

regular expression

regular language

structural induction

subgraph

temporal logic

transition function

transition system

Turing machine

weighted graph

Problems to assess outcomes for topic 3

3.1a Construct a graph from a description
(essential)

Draw a graph of the following:

1. {(1, 2), (2, 1), (1, 3), (3, 1)}

2. {(0, 0), (0, 1), (0, 2), (1, 2), (2,0)}

3. {(1, 2), (2, 1), (2, 3), (3, 2)}

4. {(1, 1), (2, 2), (3, 3), (1, 2), (2,1)}

Draw a graph with these properties:

5. Five vertices of degrees 1, 3, 3, 1, 2

6. Five vertices of degrees 1, 2, 3, 2, 2

7. Six vertices of degrees 2, 2, 3, 3, 2, 2

8. Draw the digraph with vertices {a, b, c} and with the

following adjacency matrix:

9. What is the adjacency matrix of the following graph?

3.1b Describe a basic concept of graph theory
(essential)

1. What is a path? Give a special classes of paths.

2. What is a cycle?

3. What is the degree of a vertex; of a graph?

4. When is G´ = (V´, E´) a subgraph of G = (V, E)?

5. Describe the adjacency matrix of a weighted graph.

3.2 Apply the concept of graph isomorphism

If two graphs side by side below are isomorphic, then give the two

functions that define an isomorphism. Otherwise, give an

isomorphism invariant not shared by them.

1.

2.

3.

4.

5.

3.3 Describe a transition system (priority)

1. Describe the components and execution of a

transition system.

2. Describe the steps taken by the transition system below on

inputs 1000; 1100.

3. How many states does the transition system below have?

Is the language it accepts finite or infinite? Why?

4. What are the states of the system below? In what way are

certain ones different from the others in a way that affects the

output of the system?

5. Give the transition function of the transition system above.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

3.4 Use structural induction to prove an assertion
about graphs (priority)

Let graph G = (V, E), where |G| is the number of vertices and

edges; |V| is the number of vertices; |E| is the number of edges.

Prove by structural induction:

1. For any graph, the sum of the degrees of the vertices is even.

2. For any graph, the number of vertices with odd degree

is even.

3. If G is a connected graph with n vertices and (n – 1) edges,

then G is acyclic.

4. Removing an edge from a acyclic graph yields a graph that is

not connected.

5. The sum of the degrees of all vertices in a graph is twice the

number of edges.

6. The result of removing an edge from an acyclic graph adds

one to its connectivity number.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 4 (Trees)
1. Properties of trees

1. To model a hierarchy, it is most convenient to use a(n)

(a) simple type; (b) array; (c) linked list; (d) binary search

tree; (e) general tree

2. A tree has no (a) edges; (b) vertices; (c) paths; (d) cycles;

(e) connectivity

3. A node in a tree that is the child of no other node is called the

(a) leaf; (b) parent; (c) root; (d) ancestor; (e) none of these

4. A leaf node is one without (a) data; (b) children; (c) a parent;

(d) references pointing to it; (e) none of these

5. The maximum path length from the root to a leaf is a tree’s

(a) degree; (b) connectivity number; (c) depth;

(d) edge count; (e) vertex count

6. In a tree, any two vertices are connected by ____ distinct path

or paths. (a) no; (b) exactly one; (c) one or more; (d) many;

(e) exactly two

7. A root vertex in a tree may have (a) a parent; (b) siblings;

(c) children; (d) decidability; (e) mentors

8. A binary tree has (a) one branch; (b) two vertices;

(c) two paths; (d) exactly two edges from each vertex;

(e) up to two edges from each vertex

9. A structure that is connected and contains all the vertices in a

weighted graph is (a) a coloring; (b) a path; (c) a spanning

tree; (d) a single-source shortest path; (e) a depth-first

traversal

10. A minimal spanning tree can be found by

(a) subtracting edges greedily; (b) adding edges greedily;

(c) seeking the shortest path; (d) recursive traversal;

(e) none of these

2. Using tree efficiency

1. The depth of the decision tree for an algorithm expresses its

(a) correctness; (b) problem class; (c) running time;

(d) space requirement; (e) data arrangement

2. A full binary tree with k leaves has height (a) k; (b) 2
k
; (c) 2k;

(d) log2k; (e) none of these

3. A logarithmic function is the inverse of an ___ function

(a) addition; (b) exponential; (c) reciprocal;

(d) multiplication; (e) factorial

4. The inverse of an exponential function is a (a) difference;

(b) reciprocal; (c) division; (d) logarithm; (e) power

5. The depth of a heap of size n is close to (a) 1; (b) log2n;

(c) the square root of n; (d) n / 2; (e) n
2

6. After each step of the BST search, the quantity of remaining

data to be searched is on average (a) 1; (b) lg n; (c) n  2;

(d) n; (e) 2n

7. The height of a BST is on average O(__) (a) 1; (b) lg n; (c) n;

(d) n lg n; (e) n
2

8. After each step of the binary search, the quantity of

remaining data to be searched is on average (a) 1; (b) lg n;

(c) n  2; (d) n; (e) 2n

9. A structure that shows possible outcomes of all steps of a

computation is a (a) flowchart; (b) module hierarchy;

(c) binary tree; (d) decision tree; (e) none of these

10. When the quantity of remaining data to be processed in an

algorithm, at each step, is (n  2), the complexity is O(___)

(a) 1; (b) lg n; (c) n; (d) n
2
; (e) 2

n

11. A recursive-case running time of (1 + T(n2)) indicates ____

time (a) constant; (b) logarithmic; (c) linear; (d) quadratic;

(e) exponential

12. A recursive-case running time of (n + T(n2)) indicates ____

time (a) constant; (b) n lg n; (c) linear; (d) quadratic;

(e) exponential

13. When base case is O(n) and remaining work of an algorithm

is cut in half at each step, the running time is (a) O(1);

(b) O(lg n); (c) O(n lg n); (d) O(n); (e) O(n
2
)

14. Decrease by constant factor is consistent with T (n) =

(a) T(n – 1) + O(1); (b) T(n – 1) + O(n); (c) T (n / b) + O(1);

(d) 2T (n – 1) + O(1); (e) none of these

15. T(n) = T(n / b) + f (n) is consistent with (a) decrease by

constant; (b) decrease by one; (c) decrease by constant factor;

(d) O(n
2
); (e) O(n)

16. When base case is O(1) and remaining work of an algorithm

is cut in half at each step, the running time is (a) O(1);

(b) O(lg n); (c) O(n lg n); (d) O(n); (e) O(n
2
)

17. The Master Theorem (Main Recurrence Theorem) (a) is used

to prove correctness of algorithms; (b) gives general solutions

to time recurrences for divide-and-conquer algorithms;

(c) gives intractability results; (d) is proven by temporal

logic; (e) none of these

18. Binary search can be shown to be (lg n) by

(a) Hoare triples; (b) temporal logic; (c) predicate logic;

(d) the Master Theorem (Main Recurrence Theorem);

(e) induction

3. Applications of trees in AI and bioinformatics

1. A state space is a set of (a) paths; (b) locations in the physical

universe; (c) governmental entities; (d) actual arrangements

of values; (e) possible arrangements of values

2. Games and puzzles are simple examples of

(a) embodied intelligence; (b) state-space search;

(c) inference; (d) agent interaction; (e) adaptation

3. A set of possible arrangements of values is a(n)

(a) state space; (b) path; (c) combination;

(d) random variable; (e) none of these

4. A state space is (a) part of RAM; (b) one set of variable

assignments; (c) a set of possible arrangements of values;

(d) a graph; (e) none of these

5. In a game tree, vertices are (a) cities; (b) players; (c) moves;

(d) board positions; (e) pieces

6. A phylogenetic tree represents (a) an algorithm; (b) a data

structure; (c) a taxonomy; (d) a game; (e) a problem

7. Applications in bioinformatics make use of ___ trees to

determine ancestry (a) evergreen; (b) decision;

(c) phylogenetic; (d) binary-search; (e) complete binary

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for topic 4 (Trees)
binary search

binary search tree

binary tree

BST

child

complete binary tree

decision trees

exponential function

full binary tree

game trees

heap

height

internal vertex

leaf

level

logarithmic function

m-ary tree

Master Theorem

parent

root

rooted tree

state-space search

subtree

tree

Questions to assess outcomes for topic 4
4.1a Draw a tree with given

specifications (priority)

Draw a tree with

1. six vertices, at least one of which is

neither a root nor a leaf.

2. six vertices, one of which is of

degree 3.

3. five vertices, at least one of which is

both a root and a leaf.

4. six vertices, four of which are

leaf nodes.

5. seven vertices that is a complete

binary tree

6. five vertices, two of which are leaves

7. three leaves, that is a subgraph of

the following:

4.1b Describe and prove a
property of trees (priority)

Prove by induction:

1. If a graph G = (V, E) is connected, and

|V| = |E| + 1, then G is a tree.

2. Any graph has a subgraph that is

a tree.

3. Any tree with more than one vertex

has a vertex of degree one.

4. Exactly one path joins any pair of

vertices in a tree.

5. Removing an edge from a tree

disconnects it.

6. Adding an edge to a tree creates

a cycle.

7. For any full m-ary tree (tree in which

every non-leaf node has exactly m

children) T, | T | mod m = 1.

8. For any tree T = (V, E), | V | = | E | + 1.

9. There is exactly one path between any

two vertices in a tree.

10. The height of a complete binary tree

with n vertices is log2n.

11. Every full binary tree has 2
k
1

vertices, where k is the depth of

the tree.

12. Any tree with more than one vertex

has more than one vertex of degree 1.

4.2a Explain the running time
of a tree-enabled algorithm
(priority)

In terms of the number of vertices, explain

the running time of

1. BST search (average case)

2. traversing a path of a heap from the

root to a leaf.

3. BST insertion (average case)

4. deleting all items from a balanced BST

of height n

5. descending from the root to a leaf of a

balanced tree with 2
n
 nodes

6. performing addition on pairs of binary

numerals that range in value from

0 to n

7. the binary-search algorithm

(8-9) Give the complexities of the

algorithms below and justify your answers.

8. Alg-1 (root, key)
If root = null
 return false
If data (root) = key

 return true
otherwise
 if data(root) > key

 return Alg-1 (left (root), key))
 otherwise
 return Alg-1 (right (root), key))

9. Alg-2 (A, first, last)
 if first > last // (i.e., nothing to search)
 return false
 else

 middle  (first + last)  2
 if A[middle] matches key
 return true
 otherwise
 if A[middle] > key
 return Alg-4(A, first, middle - 1, key)
 else

 return Alg-4 (A, middle + 1, last, key)

4.2b Apply the Master Theorem
to solve a recurrence

Use the Master Theorem
1
 to derive a

tight-bound () solution to the following

recurrences. Show your work.

1. T(n) = 3T(n / 2) + (n)

2. T(n) = 2T(n / 2) + (1)

3. T(n) = 4T(n / 3) + (n
2
)

4. T(n) = T(n) + (lg n)

5. T(n) = 3T(n / 2) + (n
2
)

6. T(n) = 2T(n / 2) + (n lg n)

7. T(n) = 3T(n / 3) + (1)

8. T(n) = 3T(n / 5) + (n
3
)

9. T(n) = 4T(n / 2) + (1/n)

10. T(n) = 3T(n / 4) + (1)

4.3 Describe an AI or
bioinformatics application
of trees

(1-3) Describe the following and how they

are used.

1. game trees

2. phylogenetic trees

3. decision trees

4. What does a tree represent in state-

space search? Describe its role.

5. Describe how trees may be used in

bioinformatics, with specific reference

to tree structure.

6. Describe the tree structure of the state

space search in tic tac toe.

7. Describe the tree structure of the state

space to search in the game of chess.

1
 Let T(n) = aT(n/b) + f (n), with f (n)  (nd), d 

0. Then T(n)  (nd), if a < bd; (nd lg n), if a = bd;

(n logba), if a > bd

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 5 (Countability)

1. Countable sets

1. An alphabet is (a) finite; (b) infinite; (c) finite or infinite;

(d) uncountable; (e) none of these

2. The set of strings of length k, over a finite alphabet, for

given constant k, is (a) countably infinite; (b) finite;

(c) uncountable; (d) undecidable; (e) none of these

3. Two sets have the same cardinality if (a) they are both

finite; (b) neither is strictly included in the other;

(c) a bijection exists between them; (d) they are both

infinite; (e) none of these

4. The natural numbers (a) can be paired up with the reals;

(b) are countable; (c) are uncountable; (d) are as

numerous as any set; (e) none of these

5. 
*
 is (a) finite; (b) countable; (c) uncountable;

(d) an alphabet; (e) none of these

6. A language is (a) finite; (b) infinite; (c) finite or infinite;

(d) uncountable; (e) none of these

7. Two sets have the same cardinality iff there is a ____

between them (a) relation; (b) bijection; (c) function;

(d) assertion; (e) injection

8. The cardinality of the set of natural numbers is ____ the

cardinality of the set of rational numbers (a) the same as;

(b) greater than; (c) less than; (d) not comparable to;

(e) none of these

9. The set of natural numbers is (a) indescribable; (b) finite;

(c) countably infinite; (d) uncountably infinite; (e) none

of these

10. The set of Java programs is (a) small; (b) finite

in number; (c) countable; (d) uncountable; (e) tested

11. Enumerability is an attribute of ____ sets (a) no; (b) all;

(c) all infinite; (d) all countable; (e) none of these

12. Which of these sets is countable? i. strings ii. streams

iii natural numbers iv real numbers. (a) i and ii;

(b) i and iii; (c) ii and iii; (d) ii and iv; (e) none of these

13. Cantor showed that the reals are (a) infinite;

(b) countable; (c) uncountable; (d) dense; (e) none

of these

14. Cantor’s proof about the cardinalities of real and natural

numbers was by (a) induction; (b) diagonalization;

(c) construction; (d) statistical methods; (e) none of these

15. What proof method was used by Cantor to show that the

reals are uncountable? (a) inductive; (b) diagonal;

(c) constructive; (d) immediate; (e) none of these

16. A diagonal proof is by (a) induction; (b) contradiction;

(c) construction; (d) statistical methods; (e) none of these

17. By what proof method was it shown that the real numbers

are uncountable? (a) direct; (b) induction; (c) diagonal;

(d) counter-example; (e) none of these

18. The cardinality of the set of real numbers is ____ the

cardinality of the set of rational numbers (a) the same as;

(b) greater than; (c) less than; (d) not comparable to;

(e) none of these

19. The set of real numbers is (a) indescribable; (b) finite;

(c) countably infinite; (d) uncountably infinite; (e) none

of these

20. We can disprove the existence of an enumeration of all

the real numbers by assuming an enumeration exists and

defining real whose nth digit, for all n, is different from

____ digit of the n the real in the supposed enumeration

(a) each; (b) the first; (c) the nth; (d) the (n+1)th;

(e) the last

21. The number of predicates on a set of cardinality n is (a) n;

(b) 2n; (c) n
2
; (d) 2

n
; (e) none

22. The predicates on natural numbers are (a) few;

(b) finite in number; (c) countable; (d) uncountable;

(e) none

2. Incompleteness

1. Soundness is (a) completeness; (b) validity;

(c) consistency; (d) truth; (e) provability

2. A logical system in which no false assertion can be

proven is (a) consistent; (b) complete; (c) ambiguous;

(d) paradoxical; (e) none of these

3. Godel showed that every consistent system is (a) true;

(b) unsound; (c) incomplete; (d) ambiguous; (e) sound

4. A logical system in which every true assertion can be

proven is (a) consistent; (b) complete; (c) ambiguous;

(d) paradoxical; (e) none of these

5. Gödel numbers (a) are cardinalities; (b) are reals;

(c) encode assertions; (d) encode programs; (e) none

of these

6. Gödel’s incompleteness theorem was proven by

(a) induction; (b) diagonalization; (c) construction;

(d) statistical methods; (e) none of these

7. A logical system is complete iff (a) every assertion is true;

(b) every assertion is provable; (c) every true assertion is

provable; (d) no false assertion is provable; (e) a theorem

exists for every proof

8. A logical system is consistent iff (a) every assertion is

true; (b) every assertion is provable; (c) every true

assertion is provable; (d) no false assertion is provable;

(e) a theorem exists for every proof

9. Completeness is ___ soundness (a) equivalent to;

(b) stronger than; (c) weaker than; (d) incompatible with;

(e) dependent on

10. A system in which every true assertion is provable is

(a) satisfiable; (b) valid; (c) complete; (d) consistent;

(e) sound

3. Recursive functions

1. Algorithmically computable functions are the same as

(a) those computable on a DFA; (b) those computable on

a PDA; (c) -recursive functions; (d) control devices;

(e) none of these

2. The basic primitive recursive functions include

(a) successor; (b) addition; (c) multiplication;

(d) composition; (e) recursion

3. The ___ function is not a basic primitive recursive

function (a) factorial; (b) zero; (c) successor;

(d) projection; (e) predecessor

4. One computable operation on primitive recursive

functions is (a) inverse; (b) search; (c) composition;

(d) integration; (e) none of these

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

5. Obtaining a function by primitive recursion is a way to

show that the function is (a) continuous; (b) a predicate;

(c) computable; (d) uncomputable; (e) none of these

6. The result of minimalization of a primitive recursive

function is (a) primitive recursive; (b) computable;

(c) minimal; (d) undecidable; (e) none of these

7. All computable functions f : 
*
 

*
 are

(a) primitive recursive; (b) -recursive; (c) compositions;

(d) undefined; (e) predicates

8. The composition of two computable functions is

(a) computable; (b) undefined; (c) time consuming;

(d) uncomputable; (e) uncountable

9. Primitive recursion is a way to implement (a) interaction;

(b) negation; (c) loops; (d) branches; (e) infinite sets

4. Undecidable problems

1. f (x) means (a) f (x) is descending as x rises;

(b) f (x) is unknown; (c) f is defined for parameter x;

(d) f is undefined for parameter x; (e) none of these

2. f (x) means (a) f (x) is descending as x rises;

(b) f (x) is unknown; (c) f is defined for parameter x;

(d) f is undefined for parameter x; (e) none of these

3. Any computable function can be computed by some

(a) DFA; (b) NFA; (c) PDA; (d) Turing machine;

(e) none of these

4. Any computable function can be computed by some

(a) DFA; (b) NFA; (c) PDA; (d) Java program;

(e) none of these

5. Decision problems are equivalent to functions that return

(a) natural numbers; (b) strings; (c) truth values;

(d) Turing machines; (e) none of these

6. The Halting Problem involves (a) testing a Turing

machine to see if it halts; (b) determining from the

description of a TM whether it halts; (c) determining how

to change the transition function of a TM to cause it to

halt; (d) determining what a TM outputs; (e) causing a

TM to halt

7. The standard proof that the Halting Problem is

undecidable is by (a) induction; (b) indirection;

(c) contradiction; (d) indirection; (e) none of these

8. The Halting Problem (a) is decidable; (b) provides an

example of a language that no TM accepts;

(c) is exponential-time; (d) is a machine; (e) none of these

9. Uncomputable functions correspond to problems that are

called (a) undecidable; (b) intractable; (c) P-time;

(d) optimization; (e) none of these

10. The Halting Problem is (a) undecidable; (b) intractable;

(c) NP-complete; (d) optimization; (e) none of these

11. Decision problems can also be considered as

(a) formulas in propositional logic; (b) assertions;

(c) array manipulations; (d) languages; (e) none of these

12. P is (a) a problem; (b) an algorithm; (c) the function

computed by program P; (d) the time function of

program P; (e) none of these

5. Non-well-founded sets and coinduction

1. Induction is used to define (a) branch control structures;

(b) finite objects; (c) infinite objects; (d) finite sets;

(e) none of these

2. Coinduction is used to define sets of (a) branch control

structures; (b) finite objects; (c) infinite objects;

(d) finite sets; (e) none of these

3. A coinductive definition has no (a) base case;

(b) inductive case; (c) endpoint; (d) purpose;

(e) none of these

4. Coinduction may define sets of (a) numbers;

(b) programs; (c) proofs; (d) strings; (e) streams

5. The wellfoundedness axiom states that the notion of a set

belonging to itself is (a) well-founded; (b) meaningless;

(c) doubtful; (d) mandatory; (e) none of these

6. 

 is a set of (a) numbers; (b) symbols; (c) strings;

(d) streams; (e) none of these

7. 

 is (a) finite; (b) countable; (c) uncountable;

(d) an alphabet; (e) none of these

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for topic 5 (Countability and computability)
Anti-Foundation Axiom

bijection

bounded minimalization

cardinality

coinduction

completeness

composition of functions

computable

countable set

diagonal proof

finite set

Foundation Axiom

Gödel’s theorem

HALT problem

incompleteness

infinite set

injection

minimalization

-recursive function

non-well-founded set

one-to-one

correspondence

one-to-one function

onto function

primitive recursive

function

recursion theory

recursively definable

soundness

stream

surjection

uncomputable function

uncountable set

undecidable problem

Problems to assess outcomes for topic 5

5.1a Prove that a set is countable (priority)

Show that the following sets are countable:

1. binary numerals

2. pairs of natural numbers

3. natural numbers that are multiples of 5

4. English-language sentences

5. Java programs

6. formulas in predicate logic

7. proofs in predicate logic

8. rational numbers

9. finite bit vectors

10. prime numbers

11. even numbers

12. numbers with an even number of digits

13. squares of natural numbers

5.1b Prove that a set is uncountable (priority)

For #1-5, use the diagonal method to show uncountability of the

following sets:

1. predicates over natural numbers

2. real numbers

3. predicates over strings

4. the set of sets of natural numbers

5. languages over an alphabet

6. infinite sequences of ordered pairs of natural numbers

7. Explain what this diagram is used to show.

8. Consider the set of infinite streams of ASCII characters.

(a) Show that it is uncountable.

(b) Name the proof method

(c) For each and every sequence in this set, does there exist a

Java program with no input, but with an infinite output loop,

that outputs the sequence? Why or why not?

9. Consider a mobile robot that at each step of its existence,

must decide whether to turn left or right 5 degrees, or go

forward, based on its percept and state at that instant. Define

a robot’s output behavior as a set of infinite sequences of

outputs in the set {left, forward, right}. Use Cantor’s

diagonal proof method to show that the set of all possible

robot behaviors is uncountable.

10. Answer the following “refutation” of Cantor’s proof: “Look,

you show me a particular ordering of strings and prove that

this enumeration omits some real number. So one way to list

all real numbers fails by being incomplete. So what? Maybe

someone could come up with a different ordering that would

include all reals.”

5.2 Describe the Incompleteness Theorem

1. What is incompleteness and what did Gödel’s theorem say

about it?

2. Describe Gödel’s incompleteness theorem.

3. For a consistent system of logic, with arithmetic,

what is a limit on what can be proven in the system?

Give an example.

4. In your own words, what is asserted in the proof of

Gödel’s Incompleteness theorem?

5. Define consistency and completeness. What systems of logic

have both?

5.3 Explain how recursion captures computability
(priority)

1. Explain the relationship between primitive recursion and

algorithmic computability.

2. Define the zero function and relate to primitive recursion.

3. Define the successor function and relate to

primitive recursion.

4. Distinguish primitive recursion from composition.

5. Define the set of projection functions and relate to

primitive recursion.

6. Define the primitive-recursion operation.

7. Describe how the logarithm function might be obtained from

subtraction and division by primitive recursion.

8. What proof approach might show that a certain set of Java

programs is equivalent to the -recursive functions?

Describe.

9. How is the algorithmic notion of repetition implemented in

recursive function theory? Give an example.

10. Explain the notion of composition in recursive function

theory, and tell why we can say that the primitive-recursive

functions are closed under composition.

Use operations on functions to show that the following are

-recursive

11. multiplication

12. subtraction

13. division

14. exponentiation

15. logarithm

16. finding the smallest x > 5, such that x
3
 is odd

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

5.4 Prove that a problem is undecidable

1. Compare and contrast the diagonal proofs by Cantor

(cardinality of reals is greater than that of natural numbers)

and Turing (some problems are uncomputable). What basic

proof method do they share?

2. Briefly explain why no program or algorithmic machine can

solve the halting problem.

3. A program is correct if it satisfies the program’s

specification. Is it possible to write a program that determines

the correctness of another program? Explain.

4. Describe the program S that is used as a counter-example in

the proof of undecidability of the halting problem.

5. What is wrong with the following? “It is easy to solve the

Halting Problem. Just compile the code in question and see if

it halts. If it does, output ‘yes’, otherwise ‘no’.”

5.5 Define a non-well-founded set coinductively

Using set notation, define of the set of infinite sequences of

1. bits

2. decimal digits

3. truth values

4. symbols chosen from the alphabet A

5. pairs of bits.

6. pairs of symbols from alphabet .

7. input pairs of integers (x1, x2) and output values y.

8. symbols from alphabet .

Consider the set of infinite sequences of inputs and outputs, when

inputs are pairs of strings of symbols in the set DIGITS (‘0’ .. ‘9’),

and outputs are strings of DIGITS.

9. Formally define the set of output strings.

10. How many different input pairs exist?

11. How many different output strings?

12. Formally define the set of infinite sequences of input/output

pairs of natural numbers.

13. Formally define the set of infinite sequences of input pairs

and output strings.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 6 (Combinatorics)

1. Combinatorics and counting

1. A possibility tree diagrams (a) the likelihood of one

outcome; (b) a series of events, each with n possible

outcomes; (c) one event with n outcomes; (d) a linear series

of events and outcomes; (e) none of these

2. By the Multiplication Rule, a series of k events, each with n

possible outcomes, has ____ paths through its possibility tree

(a) 1; (b) k; (c) n; (d) n
k
; (e) k

k

3. A four-character PIN number, with 36 possibilities for each

character, has ____ possible values (a) 4; (b) 36; (c) 4
36

;

(d) 36
4
; (e) 36!

4. For finite disjoint sets A and B, |A  B| = (a) |A| + |B|;

(b) max{|A|, |B|}; (c) |A  B|; (d) |A| |B|; (e) |A| + |B|  |A  B|

5. The Pigeonhole Principle states that if |A| > |B| then

(a) f : A  B is bijective; (b) f : A  B is surjective;

(c) f : A  B is injective; (d) f : A  B is not injective;

(e) f : A  B is not surjective

6. The assertion that, if |A| > |B| then no injection from A to B

exists, is called (a) inconsistency; (b) incompleteness;

(c) uncountability; (d) undecidability; (e) the Pigeonhole

Principle

7. The possible orderings of elements of a set are

(a) truth values; (b) numbers; (c) sets; (d) combinations;

(e) permutations

8. The possible unordered selections from a set are

(a) truth values; (b) numbers; (c) sets; (d) combinations;

(e) permutations

9. Permutations are ___ of a set (a) the elements;

(b) the possible orderings of elements; (c) the sizes of

subsets; (d) the subsets; (e) ways to describe elements

10. There are ____ permutations for n objects taken k at a time

(a) n; (b) n!; (c) (n – k)! / n!; (d) n! / (n – k)!;

(e) n! / ((n – k)! k!)

11. ___ are ordered (a) permutations; (b) combinations; (c) sets;

(d) subsets; (e) none of these

12. Combinations are ___ of a set (a) the elements;

(b) the possible orderings of elements; (c) the sizes of

subsets; (d) the subsets; (e) ways to describe elements

13. Combinations are expressed as (a) C(n, k); (b) n
k
; (c) n!;

(d) n! / k!; (e) k
k

14. There are ____ combinations for n objects taken k at a time

(a) n; (b) n!; (c) (n – k)! / n!; (d) n! / (n – k)!;

(e) n! / ((n – k)! k!)

15. ___ are unordered (a) permutations; (b) combinations;

(c) sequences; (d) hierarchies; (e) none of these

16. C(n, k) is also known as (a) permutations;

(b) binomial coefficients; (c) Stirling numbers; (d) factorials;

(e) a multiset

17. A multiset is a(n) (a) permutation; (b) ordered set;

(c) r-combination with repetition allowed; (d) expression of

probability; (e) exponential expression

18. An r-combination with repetition allowed is a

(a) permutation; (b) ordered set; (c) multiset;

(d) random variable; (e) expression of probability

2. Intractability

1. Intractable problems (a) are undecidable; (b) lack acceptable

approximate versions; (c) take an unacceptably long time

to solve; (d) lack solutions; (e) are easily solved

2. Exponential time is closely associated with (a) tractability;

(b) combinatorial explosion; (c) constraint problems;

(d) sorting problem; (e) interaction

3. AI problems tend to involve (a) computations with large

numbers; (b) combinatorial explosion of running time;

(c) easy choices once understood;

(d) straightforward inference; (e) none of these

4. Deciding whether a formula in propositional logic is

satisfiable is considered (a) intractable; (b) undecidable;

(c) tractable; (d) decidable; (e) polymorphic

5. SAT is the problem of deciding whether a formula in

propositional logic (a) holds; (b) has a set of variable

assignments that make it true; (c) is not a contradiction;

(d) is syntactically correct; (e) is probably true

6. The set of formulas in propositional logic that can evaluate

to true values under some set of variable assignments is

(a) SAT; (b) finite; (c) undecidable; (d) decidable in

O(n) time; (e) none of these

7. P is the set of (a) algorithms that execute in O(n) time;

(b) problems decidable in O(n
k
) time for some constant k;

(c) problems not decidable in O(n
k
) time;

(d) intractable problems; (e) exponential-time problems

8. Problems for which no polynomial-time solutions are known

are called (a) undecidable; (b) intractable; (c) NP;

(d) optimization; (e) none of these

9. NPC is the set of all (a) algorithms that execute in O(2
n
)

time; (b) problems decidable in O(n
k
) time for some constant

k; (c) problems for which possible solutions may be checked

in O(n
k
) time; (d) intractable problems; (e) exponential-

time problems

10. Problems to which SAT or similar problems are reducible are

called (a) P; (b) NP; (c) NP-complete; (d) NP-hard;

(e) undecidable

11. NP-complete problems are widely believed to have

(a) polynomial-time solutions; (b) no polynomial-time

solutions; (c) no exponential-time solutions; (d) no solutions

checkable in polynomial time; (e) none of these

12. The set of intractable problems is associated with (a) P;

(b) divide-and-conquer algorithms; (c) greedy algorithms;

(d) NP; (e) NPC and EXPTIME

3. Discrete probability

1. A set of possible outcomes is a(n) (a) random variable;

(b) probaiblity distribution; (c) compound event;

(d) sample space; (e) permutation

2. An outcome that is from a set of uncertain possibilities

characterizes a (a) random process; (b) sample space;

(c) event; (d) sequence; (e) permutation

3. A set of possible outcomes is a(n) (a) random variable;

(b) probability distribution; (c) compound event;

(d) sample space; (e) permutation

4. An outcome that is from a set of uncertain possibilities

characterizes a (a) random process; (b) sample space;

(c) event; (d) sequence; (e) permutation

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

5. A uniform probability function P(x), for a probability space

of size n, is (a) 0; (b) 1.0; (c) sqrt(n); (d) 1/n; (e) n

6. A probability space is (a) an event; (b) a random process;

(c) a set of possible outcomes; (d) a random variable;

(e) a set of probabilities

7. For sample space S, Kolmogorov’s axiom asserts that P(S) =

(a) 0; (b) 0.5; (c) 1; (d) 2; (e) indeterminate

8. For sample space S, Kolmogorov’s axiom asserts that P() =

(a) 0; (b) 0.5; (c) 1; (d) 2; (e) indeterminate

9. Kolmogorov’s axioms are considered useful for decision

making because (a) they predict outcomes in many domains;

(b) beliefs that violate the axioms result in poor bets;

(c) they help the agent prove theorems; (d) they

dictate inferences; (e) they reflect expertise

10. Monotonicity asserts that for probability spaces A and B,

(a) A  B  P(A)  P(B); (b) A  B  P(A) = P(B);

(c) A = B  P(A) < P(B); (d) A  B  P(A)  P(B);

(e) none of these

11. P(~A) = (a) 0; (b) 1.0; (c) P(A); (d) 1 – P(A); (e) 1 / P(A)

12. For disjoint events A and B (a) P(A  B)  0;

(b) P(A)  P(B); (c) P(A  B) = P(A)  P(B); (d) P(A) + P(B);

(e) P(A  B) = 1.0

13. For independent events A and B, P(A  B) = (a) P(A) + P(B);

(b) P(A)  P(B); (c) P(A) P(B); (d) P(A) / P(B); (e) 1.0

14. For independent events A and B, P(A  B) = (a) P(A) + P(B)

 P(~A) P(~B); (b) P(A)  P(B); (c) P(A) P(B);

(d) P(A) / P(B); (e) 1.0

15. The average of values for equally likely outcomes is a(n)

(a) probability; (b) random variable; (c) expected value;

(d) combination; (e) permutation

16. Expected value of a die throw is (a) 0; (b) 1; (c) 3.5; (d) 4;

(e) 6

17. Expected value of a coin toss is (a) 0; (b) 0.25; (c) 0.5; (d) 1;

(e) 2

18. P(A | B) = (a) P(A  B) / P(B); (b) P(A  B); (c) P(A) P(B);

(d) P(A) / P(B); (e) P(A)  P(B)

19. The average of values for equally likely outcomes is a(n)

(a) probability; (b) random variable; (c) expected value;

(d) combination; (e) permutation

20. Conditional probability is expressed by (a) P(A) + P(B) 

P(~A) P(~B); (b) P(A)  P(B); (c) P(A) P(B); (d) P(A) / P(B);

(e) P(A | B)

21. Conditional probability is (a) degree of belief in the absence

of other information; (b) unconditional probability;

(c) degree of belief given other information; (d) probability

of a past event; (e) a random distribution

22. A degree of belief, in the absence of helpful information, is

(a) prior probability; (b) conditional probability;

(c) a random variable; (d) an axiom; (e) an event

23. A degree of belief given some helpful information is a(n)

(a) prior probability; (b) conditional probability;

(c) random variable; (d) axiom; (e) event

24. A random variable is a(n) (a) truth value; (b) set;

(c) function; (d) relation; (e) number

25. A discrete random variable maps from (a) a sample space

to [0..1]; (b) a sample space to a sample space; (c) a sample

space to a number of outcomes; (d) outcomes to [0..1];

(e) outcomes to a sample space

26. A probability distribution maps from (a) a sample space

to [0..1]; (b) a sample space to a sample space; (c) a sample

space to a number of outcomes; (d) outcomes to [0..1];

(e) outcomes to a sample space

27. A random distribution takes values as follows (a) P(x) = k;

(b) P(x = k) = P({s  S | (s) = k}); (c) f : S  [0..1];

(d) P(A  B) = P(A) + P(B); (e) P(x)  [0..1]

28. The normal curve depicts (a) the uniform distribution;

(b) the Bayesian theorem; (c) the Gaussian distribution;

(d) a random variable; (e) an outcome

29. A flat graph of a function depicts (a) the uniform

distribution; (b) the Bayesian theorem; (c) the Gaussian

distribution; (d) a random variable; (e) an outcome

30. Prior probability is (a) conditional probability;

(b) unconditional probability; (c) degree of belief given other

information; (d) probability of a past event; (e) a

random distribution

31. Conditional probability may apply if events are (a) causal;

(b) noncausal; (c) independent; (d) dependent; (e) identical

32. Conditional probability may apply if events are (a) causal;

(b) noncausal; (c) independent; (d) dependent; (e) identical

33. Prior probability is (a) belief; (b) certainty; (c) conditional

probability; (d) unconditional probability; (e) none of these

34. Probabilities of different event outcomes are a(n) (a) event;

(b) probability distribution; (c) expected value;

(d) sample space; (e) compound event

35. Any probability value is (a) 0 or 1; (b) in the range of 0 to 1;

(c) some positive real number; (d) some positive or negative

real number; (e) an integer

36. A sample space is (a) a random variable; (b) a sequence;

(c) a number; (d) a set of all possible outcomes; (e) an event

37. Prior probability is (a) belief; (b) certainty;

(c) conditional probability; (d) unconditional probability;

(e) none of these

4. Bayes’ theorem

1. Bayes’ Theorem states that for hypotheses h and evidence E,

(a) P(hi) = P(E | hi) P(hi) / P(E);

(b) P(hi | E) = P(E | hi) P(hi) / P(E);

(c) P(E) = P(E | hi) P(hi) / P(E); (d) P(hi) = P(E | hi) / P(E);

(e) P(E) = P(E | hi) / P(E);

2. Bayes’ Theorem enables computation of probabilities of

causes, given probabilities of (a) effects; (b) other causes;

(c) prior world knowledge; (d) inference rules; (e) none

of these

3. Evidence, in Bayes’ Theorem, is (a) effects; (b) other causes;

(c) prior world knowledge; (d) inference rules; (e) none

of these

4. Bayes’ Theorem is used in constructing (a) automata;

(b) belief networks; (c) semantic networks;

(d) knowledge bases; (e) none of these

5. ___ enables finding probabilities of causes, given effects

(a) Minimax; (b) Bayes’ Theorem; (c) Gödel’s Theorem;

(d) fuzzy logic; (e) Prolog

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

5. Other applications

1. Evolutionary computation uses the technique of maximizing

(a) fitness; (b) reward; (c) performance; (d) quantity of

output; (e) none of these

2. Evolutionary computation (a) is deterministic;

(b) seeks optimal solutions; (c) was developed in the 19th

century; (d) is probabilistic; (e) none of these

3. Evolutionary computation is modeled on (a) brute force;

(b) divide and conquer; (c) greediness; (d) natural selection;

(e) fractals

4. Function optimization searches for (a) a function;

(b) parameter values; (c) a return value; (d) an algorithm;

(e) a time analysis

5. Fitness measures are (a) parameters to functions;

(b) functions to be optimized; (c) return values;

(d) algorithms; (e) time functions

6. Evolutionary computation is (a) a brute-force method;

(b) state-space search one state at a time;

(c) path optimization; (d) population based;

(e) DNA computing

7. Probabilities are employed in ____ methods (a) stochastic;

(b) logical; (c) adversarial; (d) Java; (e) none of these

8. Modal logic has operators that reflect (a) certainty; (b) truth;

(c) belief; (d) cost; (e) time

9. Degree of belief is expressed using (a) calculus; (b) logic;

(c) probability theory; (d) temperature; (e) coin flipping

10. Stochastic methods are used in ___ reasoning (a) inferential;

(b) diagnostic; (c) algorithmic; (d) paradoxical; (e) diagonal

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for topic 6 (Combinatorics and probability)
atomic event

Bayes’ Theorem

binomial coefficient

binomial distribution

binomial theorem

bounded rationality

combination

combinatorics

complementary event

complexity class

complexity of a problem

compound event

conditional probability

discrete probability

event

evolutionary

computation

expected value

exponential time

independent events

intractable problem

Kolmogorov’s axioms

Markov decision process

monotonicity

multiset

NP completeness

partial additivity

permutation

pigeonhole principle

possibility tree

prior probability

probability density

function

probability distribution

probability of an event

random process

random variable

randomized algorithm

rational decisions

sample space

SAT

satisfiability

state space

stochastic methods

uniform distribution

uniform probability

space

Questions to assess outcomes for topic 6

6.1 Solve a problem in permutations and
combinations (priority)

1. What is the expected value of the roll of two dice, and why?

Three dice? Four?

2. What is the expected number of heads in two coin tosses?

Three? Four? Five?

Showing your work, give the (a) sample space and

(b) probability that

3. Exactly one coin toss, of four, is a tail

4. At least two of four coin tosses are heads

5. The children in a four-child family are all girls (assume

equal probability of boys and girls).

6. A seven-game world series will be swept in four games by

one team or the other (assume evenly matched teams).

6.2 Describe the relationship between
combinatorics and intractable problems

1. Define the two main complexity classes that distinguish

tractable and intractable problems. Describe associated

complexity classes.

2. What sorts of running times is intractability associated with,

and why?

3. Describe the relationship among the following:

combinatorial explosion; O(n
k
); (2

n
)

4. Distinguish the problems of validity and satisfiability of

propositional-logic formulas, referring to problem

specification and complexity.

5. Concerning the following formula in propositional logic

(p  q  r)  (p  q  r)  (p  q  r):

(a) State whether the formula is satisfiable, showing your

work (you may write a truth table);

(b) State and explain what is the time necessary to answer

the question for arbitrary formulas with k variables.

6. What are the complexities of these problems w.r.t. formulas

 in propositional logic? Explain.

a.  is a tautology

b.  is satisfiable

c.  is a contradiction

d.  holds for a given set of variable assignments

7. What is TIME(T(n))?

8. What is the (very short) name of the set of problems that are

decidable in time that is a polynomial function of the

input size?

6.3a Describe a basic concept of
probability theory (priority)

Define the following and give an example.

1. sample space

2. event

3. conditional probability

4. independent events

5. expected value

6. uniform distribution

7. random variable

8. atomic event

6.3b Prove a theorem in probability theory
(priority)

Prove:

1. Monotonicity: A  B  P(A)  P(B)

2. P(A) = 1 – P(A)

3. P(A  B) = P(A) + P(B) – P(A  B)

4. P(A  A
c
) = 1 (from Kolmogorov’s axioms)

5. P(A
c
) = 1 – P(A) (from Kolmogorov’s axioms)

6. (Uniform probability function P : S  R)

P(x) = (1/n) for any x in S

7. If A, B are disjoint events, then P(A  B) = P(A) + P(B)

6.4 Describe and apply Bayes’ Theorem

1. Suppose P(A | B) = 0.8, P(A) = 0.2, and P(B | A) = 0.3. Give

P(B), using Bayes’ Theorem
2
, showing your work.

2. Describe how Bayes’ Theorem is used to find quantitative

predictions about cause-effect situations.

3. How does conditional probability enable diagnostic

reasoning? Refer to Bayes’ Theorem.

4. Express Bayes’ Theorem in mathematical notation, based on

the word description footnoted below.

2
 Bayes’ Theorem states that the conditional probability of a

hypothetical explanation for an observed event, given the event,

is the product of unconditional probability of the hypothesis and

the conditional probability of the event, given the hypothetical

explanation, divided by the unconditional probability of

the event.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

5. Name and describe the following, including the significance

of possible labels on transitions.

6.5 Describe a computational application of
probability theory

1. In your own words, relate fitness to function optimization.

2. What sorts of problems does evolutionary computation

address and how?

3. Describe a population-based, randomized way to solve

optimization problems by testing fitness.

4. Describe the evolutionary algorithm.

For #5-13, see the Markov model of weather below.

Based on that data, given that it is sunny today, showing your

work, calculate the probability that:

5. The next three days will not all be sunny

6. The next three days will be cloudy

7. The next three days will be sun, clouds, rain

8. The next three days will be rainy

9. The next two days will be rain, then sun

10. Two of the next three days will be rainy

11. The next four days will all be sunny or cloudy

12. It will be cloudy two days from now

13. It will not be sunny two days from now

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Multiple-choice questions on Topic 7 (Information theory)
1. Quantifying information

1. The mathematical framework of information theory is

similar to (a) probability theory; (b) graph theory;

(c) analysis of algorithms; (d) theory of computation;

(e) entropy in statistical mechanics

2. The study of sources, channels, and outputs of

communication systems is (a) information theory;

(b) probability theory; (c) graph theory; (d) analysis of

algorithms; (e) theory of computation

3. An application of information theory is (a) algorithm design;

(b) algorithm analysis; (c) data compression; (d) models of

computation; (e) function optimization

4. A concern of information theory is (a) excessive speed at

source; (b) inefficiency at destination; (c) noise in channel;

(d) broken connections; (e) algorithm design

5. Quantity of information in a message rises with

(a) data speed; (b) accuracy of knowledge at source;

(c) prior uncertainty about message; (d) prior certainty about

message; (e) processor speed

6. Freedom of sender’s choice of message determines

(a) quantity of information content; (b) data speed;

(c) accuracy of knowledge at source; (d) receiver’s freedom;

(e) processor speed

7. Entropy is (a) running time; (b) quantity of information;

(c) certainty; (d) speed; (e) accuracy

8. Quantity of information is (a) entropy; (b) accuracy;

(c) certainty; (d) speed; (e) order

9. A concern in data compression algorithm design is

(a) increase of redundancy; (b) increase of information

content; (c) decreased redundancy; (d) decreased information

content; (e) line speed

10. Statistical properties of ergodic processes

(a) vary throughout the processes; (b) are uniform

throughout the processes; (c) are unrelated to entropy;

(d) are indeterminate; (e) are simple

11. Entropy of a source depends on (a) speed of source;

(b) probabilities of occurrence of symbols from the source;

(c) probability of a given message; (d) probabilities of

all messages; (e) none of these

12. The information in a random event E is ____ P(E)

(a) directly related to; (b) inversely related to;

(c) directly related to the logarithm of; (d) inversely related

to the logarithm of; (e) none of these

13. The information in a coin flip is ____ bits (a) 0; (b) 1;

(c) 0.5; (d) 2; (e) 4

14. The information in two coin flips is ____ bits (a) 0; (b) 1;

(c) 0.5; (d) 2; (e) 4

2. Algorithmic definitions of randomness

1. A string that is hard to compress is highly (a) simple;

(b) random; (c) valued; (d) shrinkable; (e) improbable

2. The Kolmogorov complexity function quantifies

(a) simplicity; (b) non-randomness; (c) compressibility;

(d) algorithm running time; (e) incompressibility

3. If complexity C(x)  |x|  c, then x is (a) random;

(b) c-compressible; (c) c-incompressible;

(d) of high complexity; (e) of high running time

4. KM (x) = min{d | (p) (|p| = d)  M(p) = x } is

(a) a probability function; (b) a random variable;

(c) a measure of complexity; (d) a measure of simplicity;

(e) a measure of running time

5. The Invariance Theorem states that (a) complexity of strings

is proportional to length; (b) complexity of strings is

uniform; (c) complexity of strings is independent of

language or model of computation; (d) all strings have the

same amount of randomness; (e) none of these

6. Kolmogorov complexity if x (a) running time of a program x;

(b) running time of a program that outputs string x;

(c) length of the shortest program that outputs x;

(d) the regularity of x; (e) the nonrandomness of x

7. The complexity of a string, C(x), is (a) its length;

(b) the number of different symbols in it;

(c) its compressibility; (d) the length of the shortest

algorithm that generates it; (e) the running time of the

fastest-running algorithm that generates it

8. The length of the shortest program that outputs a string it the

string’s (a) compression ratio; (b) complexity;

(c) algorithmic size; (d) time; (e) stature

3. Chaos and complex systems

1. The occurrence of seemingly random events in deterministic

systems is (a) complexity; (b) probability; (c) combinatorics;

(d) chaos; (e) fractal dimension

2. Chaos characterizes ____ systems (a) deterministic events in

regular; (b) seemingly random events in deterministic;

(c) random events in non-deterministic; (d) predictable

events in simple; (e) predictable events in complicated

3. Aperiodic events characterize (a) clockwork;

(b) randomness; (c) non-determinism; (d) chaos;

(e) predictability

4. Chaos results from (a) internal processes;

(b) linear feedback; (c) predictability;

(d) nonlinear feedback; (e) algorithm execution

5. Nonlinear feedback results in ____ behavior

(a) deterministic; (b) periodic; (c) predictable;

(d) unpredictable; (e) time-consuming

6. Chaotic system behavior is heavily dependent on

(a) processing speed; (b) human intervention;

(c) initial conditions; (d) linear feedback; (e) none of these

7. Chaos is present when aperiodic behavior occurs in ____

systems (a) well-designed; (b) mathematically ornate;

(c) mathematically simple; (d) very complicated;

(e) none of these

8. Fractal geometry measures the ____ of objects (a) size;

(b) regularity; (c) linearity; (d) irregularity; (e) form

9. Objects that are irregular all over and at the same degree at

different scales are (a) linear; (b) simple; (c) fractals;

(d) triangles; (e) circular

10. An attractor is a(n) (a) fractal; (b) complex system;

(c) feedback generator; (d) initial state; (e) state to which a

system settles

11. A state to which a chaotic system settles is called a

(a) feedback loop; (b) complex result; (c) linear attractor;

(d) strange attractor; (e) fractal

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

12. Self-organizing systems are (a) simple; (b) feedback-free;

(c) open to their environments; (d) closed to their

environments; (e) dependent on human control

13. Systems that are open, can maintain structure in non-

equilibrium conditions, and complex in their feedback loops,

are (a) strange; (b) self-organized; (c) fractals;

(d) self-similar; (e) non-chaotic

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Terminology for topic 7 (Information theory)
attractor

chaos

complex system

complexity

compressible

data compression

decentralization

descriptional complexity

emergent behavior

entropy

feedback

fractal geometry

incompressibility

information theory

invariance theorem

Kolmogorov complexity

linear feedback

nonlinear feedback

quantity of information

randomness

self-organization

strange attractor

Problems to assess outcomes for topic 7

7.1 Describe a way to quantify information
(priority)

1. Describe a unit of measure used, in information theory, to

quantify the information in a message.

2. What happens to the quantity of information in an image after

JPEG compression of the image?

3. What is information theory?

4. How much information is contained in a string of a million

bits, each of them 0?

5. What is entropy?

6. What principles guide data compression?

7. How is the amount of information in the outcome of an event

related to the outcome’s probability?

8. How much information is contained in a string of bits

generated by a million coin flips?

9. What is Huffman code? How does the quantity of

information in a string change after the string has been

compressed using the Huffman scheme?

7.2 Define descriptional complexity and relate it
to randomness

1. Relate compressibility to randomness.

2. Relate complexity to randomness.

3. What can be said about a string x, if complexity

K(x)  |x|  c, for some constant c?

4. What is a c-incompressible string?

5. What is a way to quantify the randomness of an object?

6. What is Kolmogorov complexity?

7. Can the complexity of a string be defined only with respect to

a particular machine or programming system, or may it be

defined independently? Justify your answer.

8. If you flipped a coin 1000 times, how long do you think the

shortest algorithm that generates the string would be?

9. If you used the Java random number generator to display a

string x, a billion bits long, by simulating coin flips, what

would you estimate the complexity of x to be?

10. Write a short algorithm to generate the string 0
1000

.

How much larger an algorithm would be required to generate

the string 0
1,000,000

?

7.3 Relate chaos, complex systems, and
self-organization

1. What is chaos?

2. Relate aperiodic behavior to deterministic systems.

3. What is linear feedback and how does it relate to chaos?

4. What is an attractor?

5. What is a fractal?

6. How do initial conditions influence the behavior of

chaotic systems?

7. Give some features of self-organizing systems.

Projects
1. Find an online demo of chaotic or self-organizing systems.

2. Comment on M. Resnick’s article about decentralized

systems and decentralized thinking.

3. Download Netlogo and write up your experiences with it.

David M. Keil CSCI 317: Discrete Structures Framingham State University 2/14

Study questions on multiple topics
1. Describe results obtained in this course by induction and

results obtained by contradiction.

2. How did your ideas about the relationship between

mathematics and computing change during this semester?

3. What recurrent threads appeared multiple times in

this course?

4. What are trees and recurrences good for in

computing applications?

5. What is a discrete structure? Give some examples.

6. Concerning discrete structures, how do you know what

you know?

7. Give a practical application of a concept discussed in

this course.

8. What is computing about?

9. Defend or refute: Discrete mathematical structures have

a slight relationship with the problems encountered by

IT professionals.

10. Referring to chapter __ of Epp,

(a) What are the main concepts presented?

(b) What are the main concepts presented in the topic(s) of

this course for which the chapter was assigned?

(c) Compare and contrast the textbook presentation with what

was presented in the classroom and the slides.

11. Relate the seven topics discussed in this course. Focus on the

way that some material occurred again and again in later

topics. Contrast different approaches taken, problems

addressed, and objects analyzed. Include discussion of ways

to mathematically formalize some of the different notions

addressed in the course. While covering all the main topics,

you may emphasize ones that interested you the most.

12. How have your perspectives on the course material changed

as a result of

(a) group work,

(b) comments on your work from other students,

(c) comments from the instructor?

13. What ideas or passages in the textbook most engaged you or

most changed the way you thought?

14. Describe some relationships among logic, sets, and functions

as discussed in this course.

15. Discuss some knowledge that we have obtained in this course

with mathematical certainty.

16. Explain what a language is and some mathematical notations

for languages

17. Explain some operations on languages.

18. Describe some finite and infinite mathematical objects

Distinguish among the main classes of infinite objects

we discussed.

19. Discuss some mathematical structures that we have discussed

that enable very fast solutions to certain problems

20. Discuss some tools that we have considered that enable us to

see that certain problems are extremely time consuming

to solve.

21. Describe at least three proof methods that we have used,

together with examples of propositions proven by their use.

22. Discuss some mathematical ways that we have discussed of

managing the uncertainty of the real world.

23. Discuss some proven limitations on our ability to solve

certain problems at all.

Name___ Framingham State College 63.347 Analysis of Algorithms
 David Keil Fall 2009

Supplementary questions

T2: Sets
Fill blanks in proof: Epp, pp. 364-365, #2-5

Element argument: p. 365, #8, 10, 12-15, 17-20

Empty-set proof: p. 366, #25-35

Counter-example: p. 372, #1-4

Reflexive, symmetric, transitive relations: p. 458, #1-17

Equivalence relations: pp. 475-476, #1-19

