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Study questions on Discrete Structures for Computer Science 
The intention in providing these questions is to show 

the student what sorts of fact and problems we address in 

this course.  

Most of the multiple-choice questions are factual. 

Knowing that one can answer the questions correctly can 

raise your confidence in your learning. Awareness of not 

knowing answers of some questions can help guide 

your review. 

Multiple-choice questions are organized by subtopic in 

the course plan. Questions below are intended to 

correspond to slides, in content and in ordering. 

I appreciate hearing about questions that don’t 

correspond fully. 

In certain versions of this file, answers to multiple-

choice questions are supplied. Grading of all quizzes will 

be according to the correct answer, not the answer that has 

been provided in some list of answers. Please question any 

purported correct answers that you don’t agree with or 

don’t understand. 
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Study questions on Introduction and background 

1. What this course offers 

1. An example of analog representation is (a) a file stored on a 

computer; (b) a message sent on the Internet; (c) the sound 

heard from an IPod; (d) a picture in RAM; (e) a register in a 

processor 

2. Analog is to digital as continuous is to (a) binary; (b) infinite; 

(c) discrete; (d) irrational; (e) none of these 

3. Discrete is to continuous as (a) binary is to decimal; 

(b) real is to integer; (c) digital is to analog; (d) infinite is to 

finite; (e) none of these 

4. An algorithm lacks which of these features? (a) computes a 

function; (b) is deterministic; (c) may take an unreasonably 

long time; (d) works in discrete steps; (e) may never end 

5. Algorithm specifications presuppose (a) that input has 

occurred; (b) that processing has occurred; (c) that output has 

occurred; (d) the meaning of input; (e) that loops time out 

6. Algorithms solve problems that are associated with 

(a) services; (b) protocols; (c) irrational numbers; 

(d) functions; (e) none of these 

7. A function is a (a) truth value; (b) data item; (c) algorithm; 

(d) process; (e) mapping 

8. A function may often be computed by a(n) (a) service; 

(b) interactive protocol; (c) multi-agent system; 

(d) algorithm; (e) event-driven program 

9. Input to an algorithm is (a) necessarily atomic; 

(b) obtained before algorithm execution; (c) obtained during 

execution; (d) necessarily compound; (e) possibly infinite 

10. An algorithm is a(n) (a) program; (b) plan; (c) structure; 

(d) service; (e) process 

11. Discrete structures are (a) algorithms; (b) real numbers; 

(c) objects; (d) truth values; (e) arrays 

12. Symbols are (a) analog; (b) real; (c) discrete; (d) continuous; 

(e) waves 

3. Logic and proof techniques 

1.  denotes (a) set membership; (b) union; (c) AND; 

(d) a relation between sets; (e) negation 

2.  denotes (a) set membership; (b) union; (c) AND; 

(d) a relation between sets; (e) logical negation 

3. Logic manipulates (a) numbers; (b) algorithms; 

(c) truth values; (d) sound; (e) strings 

4.  denotes (a) set membership; (b) union; (c) AND; (d) OR; 

(e) implication 

5.  denotes (a) set membership; (b) union; (c) AND; (d) OR; 

(e) implication 

6. A logic is (a) a language; (b) a rule; (c) a set of truth values; 

(d) a set of numeric values; (e) none of these 

7. Logic manipulates (a) strings; (b) numbers; (c) truth values; 

(d) programs; (e) objects 

8. If p = false, q = false, and r = true, then which is true? 

(a) p  (q  r); (b) p  (q  r); (c) (p  q)  r; 

(d) p  (q  r); (e) p  (q  r) 

9. (T-F) If we live on Pluto, then cats have wings. 

10. (T-F) If airplanes fly, then 1 + 1 = 2. 

11. (T-F) If the earth is flat, then 1 + 1 = 2. 

12. (T-F) If the earth is round, then 1 + 1 = 3. 

13. (T-F) If trees have ears, then dogs have wings. 

14. (T-F) 2 + 2 = 4 only if 1 + 1 = 3. 

15. An if-then assertion whose first clause is true is (a) never 

true; (b) sometimes true; (c) always true; (d) meaningless; 

(e) none of these 

16. A rigorous demonstration of the validity of an assertion is 

called a(n) (a) proof; (b) argument; (c) deduction; 

(d) contradiction; (e) induction 

17. A proof that begins by asserting a claim and proceeds to 

show that the claim cannot be true is by (a) induction; 

(b) construction; (c) contradiction; (d) prevarication; 

(e) none of these 

18. A proof that proceeds by showing the existence of something 

desired is by (a) induction; (b) construction; (c) contradiction; 

(d) prevarication; (e) none of these 

19. Proofs by contradiction (a) dismiss certain rules of logic; 

(b) misrepresent facts; (c) start by assuming the opposite of 

what is to be proven; (d) end by rejecting what is to be 

proven; (e) none of these 

20. Induction is a(n) (a) algorithm; (b) program; (c) proof; 

(d) proof method; (e) definition 

21. Contradiction is a(n) (a) algorithm; (b) program; (c) proof; 

(d) proof method; (e) definition 

22. Construction is a(n) (a) algorithm; (b) program; (c) proof; 

(d) proof method; (e) definition 

23. A proof that begins by asserting a claim and proceeds to 

show that the claim cannot be true is by (a) induction; 

(b) construction; (c) contradiction; (d) prevarication; 

(e) none of these 

Inductive proof 

1. The induction principle makes assertions about 

(a) infinite sets; (b) large finite sets; (c) small finite sets; 

(d) logical formulas; (e) programs 

2. A proof that proceeds by showing that a tree with n vertices 

has a certain property, and then shows that adding a vertex to 

any tree with that property yields a tree with the same 

property, is (a) direct; (b) by contradiction; (c) by induction; 

(d) diagonal; (e) none of these 

3. A proof that shows that a certain property holds for all natural 

numbers is by (a) induction; (b) construction; 

(c) contradiction; (d) prevarication; (e) none of these 

4. The principle of mathematical induction states that if zero is 

in a set A, and if membership of any value x in A implies that 

(x + 1) is in A, then (a) A is all natural numbers; (b) the proof 

is invalid; (c) A is the null set; (d) A is x; (e) A is {x} 

5. In an inductive proof, showing that P(0) is true is (a) the base 

step; (b) the inductive step; (c) unnecessary; (d) sufficient to 

prove P(x + 1); (e) sufficient to prove P(x) for all x 

6. In an inductive proof, showing that P(x) implies P(x + 1) is 

(a) the base step; (b) the inductive step; (c) unnecessary; 

(d) sufficient to prove P(x) for some x; (e) sufficient to prove 

P(x) for all x 

7. In an inductive proof, showing that P(0) is true, and that P(x) 

implies P(x + 1), is (a) the base step; (b) the inductive step; 

(c) unnecessary; (d) sufficient to prove P(x) for some x; 

(e) sufficient to prove P(x) for all x 
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8. An inductive proof with graphs might proceed by 

(a) showing a contradiction; (b) showing a counter-example; 

(c) considering all graphs one by one; (d) starting with some 

simple graph and adding one vertex or edge; (e) none of these 

9. The base step in an inductive proof might (a) show that P(0) 

is true, and that P(x) implies P(x + 1); (b) show that P(0) is 

true; (c) show that that P(x) implies P(x + 1); (d) give a 

counterexample; (e) assume the opposite of what is to be 

proven 

10. The inductive step in an inductive proof might (a) show that 

P(0) is true, and that P(x) implies P(x + 1); (b) show that P(0) 

is true; (c) show that that P(x) implies P(x + 1); (d) give a 

counterexample; (e) assume the opposite of what is to be 

proven 

11. An inductive proof might consist of (a) showing that P(0) is 

true, and that P(x) implies P(x + 1); (b) showing that P(0) is 

true; (c) showing that that P(x) implies P(x + 1); (d) giving a 

counterexample; (e) assuming the opposite of what is to be 

proven, and proving a contradiction 

4. Sets, relations, and functions 

1.  denotes (a) set membership; (b) union; (c) conjunction; 

(d) a relation between sets; (e) negation 

2.  denotes (a) set membership; (b) union; (c) AND; (d) a set; 

(e) negation 

3.  denotes (a) set membership; (b) union; (c) AND; (d) a set; 

(e) negation 

4.  denotes (a) set membership; (b) union; (c) AND; 

(d) a relation between sets; (e) negation 

5. {1,2,3}  {2,4,5} =  (a) {}; (b) {1,2}; (c) 2; (d) {2}; 

(e) {1,2,3,4,5} 

6. {1,2,3}  {2,4,5} =  (a) {}; (b) {1,2}; (c) 2; (d) {2}; 

(e) {1,2,3,4,5} 

7. (T-F) {1, 3}  ({1, 3, 5}  {1, 5}) 

8. (T-F)    

9. (T-F)    

10. (T-F)   {} 

11. (T-F)   {} 

12. {} is a subset of (a) itself only; (b) no set; (c) all sets; 

(d) only infinite sets; (e) none of these 

13. A relation on set A is (a) an element of A; (b) a subset of A; 

(c) an element of A  A; (d) a subset of A  A; 

(e) none of these 

14. A function f : {1,2,3}  {0,1} is a set of (a) integers; 

(b) ordered pairs; (c) sets; (d) relations; (e) none of these 

15. A string is (a) a set of symbols; (b) a sequence of characters; 

(c) a relation; (d) a set of sequences; (e) none of these 

16. The null set is a (a)  member of itself; (b)  member of any set; 

(c) subset of any set; (d) superset of any set; (e) none of these 

17. The power set of A is (a) the set of all members of A; 

(b) a subset of A; (c) the set of subsets of A; (d) the null set; 

(e) an intersection 

18. For all sets A (a) A  A; (b) A  A ; (c) A ≠ A; (d) all of these; 

(e) none of these 

19. A relation on set A is (a) an element of A; (b) a subset of A; 

(c) an element of A  A; (d) a subset of A  A; 

(e) none of these 

20. The Cartesian product of two sets is a(n) (a) set of sets; 

(b) ordered pair; (c) set of ordered pairs; (d) subset of the two 

sets; (e) union of the two sets 

21. (A × B) is (a) the set containing elements of A and B; (b) the 

set of ordered pairs of elements chosen from A and B 

respectively; (c) any relation of elements of A and B; 

(d) a function from A to B; (e) none of these 

22. We may represent a Cartesian product as a (a) linear array; 

(b) linked list; (c) matrix; (d) tree; (e) none of these 

23. A relation is not a (a) set of ordered pairs; (b) set of numbers; 

(c) subset of a Cartesian product; (d) way to express how two 

sets relate; (e) it is all of these 

24. A function f: {1,2,3}  {0,1} is a set of (a) integers; 

(b) ordered pairs; (c) sets; (d) relations; (e) none of these 

25. When A and B are sets, (A  B) is (a) a set of ordered pairs; 

(b) an arithmetic expression; (c) a sequence of values; 

(d) all of these; (e) none of these 

Discrete-math / finite-math terminology 
algorithm  

analog data 

binary relation  

binary tree  

Cartesian product  

ceiling function 

conjunction  

construction  

contradiction  

database  

disjunction 

domain  

existential quantifier 

floor function 

function  

graph  

implication  

induction 

integer  

intersection  

logic  

natural number 

negation  

one-to-one  

path  

predicate  

predicate logic  

principle of 

mathematical 

induction  

proper subset  

propositional logic  

range  

rational number  

real number  

relation  

relative complement  

sequence  

set theory  

set  

subset  

tree  

union  
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Multiple-choice questions on Topic 1 (Boolean algebras) 

1. Propositional logic and Boolean algebras 

1. An algebra is (a) a set of integers; (b) any set of values; 

(c) a set of values and operations on them; (d) a set of 

operations; (e) a set of functions 

2. A Boolean algebra includes operations with the ____ 

property (a) transitive; (b) reflexive; (c) commutative; 

(d) monotonic; (e) completeness 

3. A Boolean algebra includes operations with the ____ 

property (a) transitive; (b) reflexive; (c) associative; 

(d) monotonic; (e) completeness 

4. A Boolean algebra includes operations with the ____ 

property (a) transitive; (b) reflexive; (c) distributive; 

(d) monotonic; (e) completeness 

5. Any set A, plus two binary operations on A with the 

associative and other properties, is (a) the whole numbers; 

(b) propositional logic; (c) set theory; (d) a Boolean algebra; 

(e) any algebra 

6. ((U),{, }) is (a) complete; (b) inconsistent; 

(c) a Boolean algebra; (d) a temporal logic; (e) a set 

of numbers 

7. A set with the identity property has an element (a) 0, s.t. 

(x  A) x + 0 = x; (b) 0, s.t. (x  A) x  0 = x; (c) 1, s.t. 

(x  A) x + 1 = x; (d) that is identical to some other 

element; (e) that is identical to all other elements 

8. For algebra A, if x  A then x
–1

 is the ____ of x (a) identity 

value; (b) complement; (c) negation; (d) reciprocal; 

(e) none of these 

9. Propositional logic is (a) complete; (b) inconsistent; 

(c) a Boolean algebra; (d) a temporal logic; (e) a set 

of numbers 

10. If x is an element of a Boolean algebra, then (x
–1

)
–1

 = (a) 0; 

(b) 1; (c) x; (d) x
–1

; (e) not x 

11. An interpretation is (a) an assignment of truth values; 

(b) the value of an assertion; (c) the meaning of a program; 

(d) a formula; (e) none of these 

12. An interpretation of a set of formulas in predicate logic is 

(a) a logical inference; (b) a heuristic; (c) an assignment of 

truth values to variables; (d) a theorem; (e) a truth value 

13. The semantics of propositional logic specify (a) numeric 

values; (b) results of operations; (c) rules for constructing 

formulas; (d) the meaning of ; (e) none of these 

14. (p  q) iff (a) p  q; (b) p  q; (c) p  q; (d) p  q; 

(e) q  p 

15. An assertion’s value is (a) true; (b) a symbol; (c) a number; 

(d) true or false; (e) none of these 

16. A truth table contains (a) variables; (b) formulas; 

(c) values of formulas under one interpretation; (d) values of 

formulas under all interpretations; (e) operations 

17. If formulas  and  have the same truth table, then (a)   ; 

(b)   ; (c)   ; (d)   ; (e)    

18. Satisfiability is ___ validity (a) weaker than; 

(b) equivalent to; (c) stronger than; (d) a subset of; 

(e) none of these 

19. A sentence that is not true under any interpretation is 

(a) complete; (b) incomplete; (c) consistent; (d) inconsistent; 

(e) valid 

20. A sentence that is true under all interpretation is (a) complete; 

(b) incomplete; (c) consistent; (d) inconsistent; (e) valid 

21. A formula is satisfiable if it has a(n) ____ under which it 

is true (a) operation; (b) algorithm; (c) number; 

(d) interpretation; (e) none of these 

22. Satisfiability is ___ validity (a) weaker than; 

(b) equivalent to; (c) stronger than; (d) a subset of; 

(e) none of these 

23. SAT is the problem of deciding whether a formula in 

propositional logic (a) holds; (b) has a set of variable 

assignments that make it true; (c) is not a contradiction; 

(d) is syntactically correct; (e) is probably true 

24. The sentence,  |=   (in every interpretation where  is true, 

 is true), is an instance of (a) entailment; (b) negation; 

(c) validity; (d) satisfiability; (e) falsehood 

25. Inference rules maintain (a) completeness; (b) consistency; 

(c) validity; (d) satisfiability; (e) falsehood 

26. An inference rule that never produces contradictions is 

(a) complete; (b) incomplete; (c) inconsistent; (d) sound; 

(e) useless 

27.  (p  (p   q))  q is (a) false; (b) Modus Ponens; 

(c) inconsistent; (d) not always true; (e) none of these 

28. A validity-maintaining procedure for deriving sentences in 

logic from other sentences is a(n) (a) proof; (b) theorem; 

(c) algorithm; (d) inference rule; (e) inference chain 

29. p iff q means (a) p  q  q  p; (b) p  q  q  p; 

(c) p  q but not necessarily q  p; (d) q  p but not 

necessarily p  q; (e) none of these 

30. Inference is (a) commutative; (b) transitive; (c) undecidable; 

(d) time dependent; (e) associative 

31. The property asserted by (p  q  q   r)  (p  r)  is 

(a) commutative; (b) transitive; (c) undecidable; 

(d) time dependent; (e) associative  

32. The property asserted by (p = q  q = r)  (p = r) is  

(a) commutative; (b) transitive; (c) undecidable; (d) time 

dependent; (e) associative  

2. Predicate logic 

1. Quantifiers ____ variables (a) negate; (b) change; (c) bind; 

(d) define; (e) give values to 

2. To bind a variable in an expression like Odd(x), what are 

used? (a) arithmetic operators; (b) logical operators; 

(c) quantifiers; (d) predicates; (e) negations 

3. When multiple quantifiers are the same, then then the 

meaning of a predicate logic sentence (a) depends on order; 

(b) is ambiguous; (c) is independent of order; 

(d) is determined by arithmetic operators; (e) is determined 

by logical operators 

4. When multiple quantifiers differ, then the meaning of a 

predicate logic sentence (a) depends on order; 

(b) is ambiguous; (c) is independent of order; 

(d) is determined by arithmetic operators; (e) is determined 

by logical operators 

5. Predicate logic is a(n) (a) algorithm; (b) language of 

assertions; (c) language of arithmetic expressions; 

(d) set of symbols; (e) set of operations 

6. (x) x = x + 1 is (a) a numeric expression; (b) false; (c) true; 

(d) an assignment; (e) none of these 
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7. (x) x = x + 1 is (a) a numeric expression; (b) false; (c) true; 

(d) an assignment; (e) none of these 

8. Quantifiers ____ variables for meaningful use (a) give 

values to; (b) take values from; (c) bind; (d) assign; 

(e) declare 

9. Predicate calculus extends propositional logic with 

(a) inference; (b) negation; (c) implication; (d) variables; 

(e) quantifiers 

10. A formula in logic is valid if (a) it is true for some 

interpretation; (b) it is true for all interpretations; (c) it is true 

for no interpretation; (d) it is an axiom; (e) it is not disproven 

11. A formula in logic is satisfiable if (a) it is true for some 

interpretation; (b) it is true for all interpretations; (c) it is true 

for no interpretation; (d) it is an axiom; (e) it is not disproven 

12. A formula in logic is inconsistent if (a) it is true for some 

interpretation; (b) it is true for all interpretations; (c) it is true 

for no interpretation; (d) it is an axiom; (e) it is not disproven 

13. Inference rules enable derivation of (a) axioms; 

(b) other inference rules; (c) new true assertions; (d) percepts; 

(e) none of these 

14. Inference rules maintain (a) completeness; (b) consistency; 

(c) validity; (d) satisfiability; (e) falsehood 

15. An inference rule that never produces contradictions is 

(a) complete; (b) incomplete; (c) inconsistent; (d) sound; 

(e) useless 

3. Some proof methods  

1. Existentially quantified assertions may be proven by 

(a) contradiction; (b) induction; (c) showing an instance; 

(d) diagonalization; (e) counter-example 

2. Forward chaining (a) is goal driven; (b) starts with an 

assertion to be proven; (c) is data driven; (d) is not sound; 

(e) none of these 

3. Backward chaining (a) is goal driven; (b) is sound; 

(c) generates all possible entailments; (d) applies modus 

ponens; (e) starts with the data at hand 

4. An algorithm that determines what substitutions are needed to 

make two sentences match is (a) resolution; (b) inference; 

(c) unification; (d) contradiction; (e) nonexistent 

5. Unification is (a) an algorithm for making substitutions so 

that two sentences match; (b) a proof method; 

(c) an inference rule; (d) a theorem; 

(e) a knowledge-representation scheme 

6. Resolution proof uses (a) forward chaining; (b) contradiction; 

(c) abduction; (d) unification; (e) statistics 

See also questions on induction in Introduction topic, subtopic 2. 

4. Inductive proofs of correctness 

1. Which are sufficient conditions for algorithm correctness? 

(a) good programming methodology; (b) customer 

satisfaction; (c) approval by QA; (d) output is specified 

function of input; (e) program always halts and output is 

specified function of input 

2. Total correctness is partial correctness plus (a) termination; 

(b) proof; (c) loop invariant; (d) postcondition; (e) efficiency 

3. An assertion is (a) a comment that describes what happens in 

an algorithm; (b) a command; (c) a claim about the state of 

the computation; (d) an algorithm; (e) none of these 

4. The purpose of assertions in formal verification is to 

(a) help establish that code is correct; (b) describe what 

happens in a program; (c) guarantee that a program halts; 

(d) catch exceptions; (e) all the above   

5. A loop invariant is asserted to be true (a)  throughout the loop 

body; (b) at the beginning of every iteration of a loop; 

(c) is the same as the postcondition; (d) all the above; 

(e) none of the above 

6. An assertion that is true at the start of each iteration of a loop 

is (a) a precondition; (b) a loop invariant; (c) a postcondition; 

(d) a loop exit condition; (e) none of these 

7. A loop invariant asserts that (a) the precondition holds; 

(b) the postcondition holds; (c) a weaker version of the 

postcondition holds; (d) the algorithm terminates; 

(e) none of these 

8. A postcondition (a) is asserted to be true before an algorithm 

executes; (b) is asserted to be true at the beginning of every 

iteration of a loop; (c) is asserted to be true after an algorithm 

executes; (d) all the above; (e) none of the above 

9. A precondition is asserted to be true (a) before an algorithm 

executes; (b) at the beginning of every iteration of a loop; 

(c) after an algorithm executes; (d) all the above; (e) none of 

the above 

10. A Hoare triple consists of (a) precondition, loop invariant, 

postcondition; (b) program, loop invariant, postcondition; 

(c) precondition, program, postcondition; (d) proof, loop 

invariant, program; (e) none of these 

11. A Hoare triple specifies (a) loop invariant and postcondition; 

(b) precondition, program and postcondition; (c) program and 

postcondition; (d) performance requirements; (e) none 

of these 

12. <> P <> is a (a) precondition; (b) loop invariant; 

(c) postcondition; (d) Hoare triple; (e) first-order 

logic formula 

13. In <> P <>,  is a (a) precondition; (b) loop invariant; 

(c) postcondition; (d) Hoare triple; (e) Boolean literal 

14. In <> P <>,  is a (a) precondition; (b) loop invariant; 

(c) postcondition; (d) Hoare triple; (e) Boolean literal 

15. In <> P <ψ>, P is a (a) precondition; (b) loop invariant; 

(c) postcondition; (d) program; (e) propositional-

logic formula 
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Terminology for Topic 1 (Boolean algebras) 
algebra  

arity  

assertion 

automated reasoning 

backward chaining 

base case 

Boolean algebra  

Boolean variable 

complement 

conjunction 

constructive proof 

De Morgan’s Laws 

disjunction 

entailment 

existential quantifier 

first-order logic 

forward chaining  

Hoare triple 

idempotent 

identity 

implication 

induction principle 

inductive case 

inference  

interpretation 

loop invariant 

model  

modus ponens 

modus tollens  

negation 

partial correctness 

postcondition  

precondition 

predicate  

predicate logic 

proof procedure 

property 

propositional logic  

resolution 

satisfiability  

termination 

total correctness 

transitivity  

truth assignment 

truth tables 

unification 

universal quantifier 

validity 

Objectives-related questions on topic 1 

1.1a Describe the syntax of propositional logic 
(essential) 

1. Describe the literals in propositional logic. 

2. Describe the operators in propositional logic. 

3. Describe the syntax of propositional-logic formulas. 

4. What may appear in parentheses in a  

propositional-logic formula? 

(5-10) Why is each of the following not a propositional-

logic formula? 

5. p  q 

6.  p  q 

7. p   q 

8. p  q   

9. p  q   

10. p ( q) 

1.1b Apply the semantics of propositional logic 
(essential) 

Write truth tables for the following assertions: 

1. (p  q)  r 

2. (p  q)  r 

3. (p  q)  r 

4. (p  q)   r 

5. p  (q    r) 

1.1c Apply logical inference(essential) 

Write simpler propositional-logic formulas, equivalent to the 

following, using Modus Ponens, Modus Tollens, or the definition 

of implication; and naming the rule you used. You may 

abbreviate words with their initials; e.g., “c” =” clouds”. 

1. (q  r)  q 

2.  p  (q  p) 

3. ( r  q)  r 

4. q  (q   p) 

5. Dark clouds mean it will rain; and I see dark clouds. 

6. There’s no class on holidays. There’s class today. 

1.1d Explain Boolean algebras (essential) 

1. What are the features of a Boolean algebra? Discuss in 

relation to a logic. 

2. What are the identity elements in propositional logic? Relate 

to operations. 

3. What is the complement of true in propositional logic? 

Relate to operations. 

4. What are the identity elements for two operators in 

propositional logic? What mathematical structure has 

identity elements and complements?  

Defend or refute: 

5. Certain basic set operations together form a Boolean algebra. 

6. Propositional logic is a Boolean algebra. 

7. The natural numbers form the basis for a Boolean algebra. 

1.2a Use a quantifier (essential) 

Use quantifiers and predicates to express the following in 

predicate logic. 

1. Some athletes are fast. 

2. All athletes are strong. 

3. Some fast people are athletes. 

4. All strong people are athletes. 

5. Some athletes are not tall. 

6. All tall athletes are strong. 

7. All fast strong people are athletes. 

8. Some strong people aren’t athletes. 

1.2b Distinguish predicate from 
propositional logic (essential) 

1. What two features distinguish predicate logic from 

propositional logic? 

2. Name and describe the sorts of assertions that predicate logic 

can express that propositional logic cannot. 

3. Describe the meanings of , , and P(x), and name the logic 

that supports them. 

4. Describe some limitations of propositional logic and state 

how another logic overcomes them. 

5. Describe the quantifiers and how they address a limitation of 

propositional logic. 

1.3a Write a direct proof (essential) 

Use direct proof to show that 

1. the product of any natural number and an even natural 

number is even. 

2. the difference between any two even natural numbers 

is even. 

3. for any m  3, m
2
 – 4 is non-prime.  

4. the sum of an even natural number and an odd one is odd. 
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5. for any integers a, b, the difference between a
2
 and b

2
 is an 

odd number. 

1.3b Write a proof by construction (essential) 

Prove by construction, giving the predicate being proven. 

1. 24 is divisible by both 2 and 6. 

2. 20 is divisible by both 4 and 5. 

3. 10 is the sum of two odd numbers. 

4. 13 is the sum of an even number and an odd number. 

5. 22 is the sum of two even numbers. 

6. There exist two consecutive numbers that add up to 17.  

1.3c Write a proof by contradiction (essential) 

Prove by contradiction that: 

1. No largest integer exists. 

2. No smallest positive real number exists. 

3. The sum of two even numbers is always an even number. 

4. The sum of two odd numbers is always an even number. 

5. The sum of an even and an odd number is always odd. 

6. The difference between an even and an odd number is odd. 

1.3d Describe the principle of 
mathematical induction (essential) 

1. Describe the two parts of an inductive proof. 

2. What is the principle of mathematical induction? 

3. What sorts of theorems can the principle of mathematical 

induction be used to prove? 

4. In an inductive proof, what must be shown, other than P(0)? 

5. Explain the role of P(n)  P(n + 1) in some 

mathematical proofs. 

1.3e  Use induction to prove a theorem 
about numbers (essential) 

Prove by mathematical induction that for all natural numbers 

greater than zero,  

1. n
2
 + n = (2 + 4 + 6 + … + 2n)  

2. ∑   
    = (n

2
 + n)/2 

3. (n
 3
 + 2n) is divisible by 3 

4. 1 + 6 + 11 + … + (5n – 4) = (5n
2
 – 3n) / 2 

5. 1 + 3 + 5 + . . . + (2n – 1) = n2
 

6. 2
0
 + 2

1
 + 2

2
 + … + 2

n
 = 2

n+1
 – 1 

1.4a Explain concepts of algorithm correctness 
(priority) 

1. What is an assertion, about the state of a repetitive process, 

that holds at the start of the process and helps to establish 

that the process spec is satisfied? How is it used? 

2. What are three classes of comments that help establish that 

the spec of a procedure is satisfied? For each, state where the 

comment should appear in the code or pseudocode. 

3. For an algorithm, what is the likely relationship between a 

loop invariant and a postcondition? 

4. How are loop invariants related to induction? 

5. Distinguish partial from total correctness. 

6. Identify the components of <> P <ψ> as discussed in class, 

and the meaning and purpose of this. 

 

1.4b Use induction to prove an algorithm correct* 

By use of preconditions, postconditions, and loop invariants, prove that the pseudocode below is correct.

1.  Count-spaces(s) 
> Returns number of  
> spaces in string.  
y  0 
i  1 
while i  length(s) do 
 if s[ i ] = ‘  ‘ 
  y  y + 1  
 i  i + 1 
return y 

2. Search-stack (S, key) 
> Tells whether stack S  
> contains key 

 found  false  
 while not empty(S) 

  test  Pop(S) 
  if test = key  

   found  true  
 return found 

3. All-same (A) 
> Tells whether all 
> elts of A are same 

y true 

for i  2 to |A| 
   If A[ i ] = A[i – 1] 

  y false 
return y 

4. Quotient (a, b) 

 > Performs integer division 
y  0 
s  a – b  
while s > 0 
  s  s  b 
  y  y + 1 
return y 

5.  Largest-to-right (A) 
> Returns A after moving the 
> largest element to right.  

largest  1 

for i  2 to |A| do 
 if A[ i ] > A [largest] 

    largest  i 
A[largest] with A[|A|] 
return A 

6. Fact (x) 
    > Computes factorial: 

y  1 

i  1 
while i < x 

 y  i  y 

  i   i + 1 
return y 

8. Index-of-largest (A)x 
> Returns index of the  
> largest element of A  

y   1 

for i  1 to |A| – 1) 
 if A[ i ] < A[y] 

  y  i 

  i   i + 1 
return y 

7. Max (A) 
 > Returns largest elt of A 

y  A[1]   

i  1 
while i < |A| 
 if y < A[ i ] 

  y  A[ i ] 

 i   i + 1 
 return y 

9.  Pow (a, b) 
> returns ab 

y  a 

i  1 
while i < b 

 y  a   y 

  i   i + 1 
return y 

10. Sum (A) 
> Computes sum of  
> array elements 

 y  0 

i  1 

while i  |A| 

 y  y + A[ i ] 

  i   i + 1 
return y 

11.  Product (x, y)f 
>Performs multiplication 

result  0 

For i  1 to x 

  result  result + y 
Return result 

12. Which-sort (A)  

for i  size(A) down to 2 do 

  A Largest-to-right (A[1.. i ]) 
 (You may assume that Largest-

to-right (#5 above) is correct). 
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Multiple-choice questions on Topic 2 (Sets, relations) 

1. Properties of sets 

1. For sets A and B, A  B = (a) A; (b) B; (c) B  A; (d) A  B; 

(e) A  B 

2. For sets A and B, (A  B) (a)  A; (b)  A; (c)  B; (d)  B; 

(e) = A  B 

3. (A  B)  (B  C)  (A  C) is a(n) ___ property;  

(a) associative; (b) commutative; (c) identity; (d) transitive; 

(e) inverse 

4. (A  B)  C  = A  (B  C) is a(n) property (a) associative; 

(b) commutative; (c) identity; (d) transitive; (e) inverse 

5. A  A
c
 = (a) U; (b) A; (c) A

c
; (d) ; (e) none of these 

6. (A
c
)

c
 = (a) U; (b) A; (c) U – A; (d) ; (e) none of these 

7.  A  A
c
 = (a) U; (b) A; (c) U – A; (d) ; (e) none of these 

8.  A   = (a) U; (b) A; (c) U – A; (d) ; (e) none of these 

9.  A   = (a) U; (b) A; (c) U – A; (d) ; (e) none of these 

10.  A  U = (a) U; (b) A; (c) U – A; (d) ; (e) none of these 

11.  A  U = (a) U; (b) A; (c) U – A; (d) ; (e) none of these 

12. To prove that sets A and B are equal, prove that 

(a) A  B  B  A; (b) A  B  B  A; (c) A  B  B  A; 

(d) A  B   B  A; (e) none of these 

13. x  A
c
 implies (a) x  A; (b) x = A

c
; (c) x  A; (d) A = ; 

(e) none of these 

14. Sets A and B are disjoint iff A  B = (a) A; (b) B; (c) U; 

(d) ; (e) none of these 

15. If {A1, A2, …} partitions A, then A1, A2, … (a) are the same; 

(b) are disjoint; (c) are in a subset relation to each other; 

(d) have a non-null intersection; (e) none of these 

2. Relations  

1. In a symmetric relation R over A, (a) ( x  A) xRx; 

(b) ( x, y  A) xRy  yRx; 

(c) (x,y,z  A) xRy  yRz  xRz; (d) all of these; (e) none 

of these 

2. In a transitive relation R over A, (a) ( x  A) xRx; 

(b) ( x, y  A) xRy  yRx; (c) (x,y,z  A) xRy  yRz  

xRz; (d) all of these; (e) none of these 

3. In a reflexive relation R over A, (a) ( x  A) xRx; 

(b) ( x, y  A) xRy  yRx; (c) (x,y,z  A) xRy  yRz  

xRz; (d) all of these; (e) none of these 

4. In a reflexive relation on A (a) each element of A is related to 

itself; (b) each ordered pair (a, b) is matched by (b, a); 

(c) if aRb and bRc then aRc; (d) the diagonal of the matrix is 

empty; (e) none of these 

5. In a symmetric relation on A (a) each element of A is related 

to itself; (b) each ordered pair (a, b) is matched by (b, a); 

(c) if aRb and bRc then aRc; (d) the diagonal of the matrix is 

empty; (e) none of these 

6. In a transitive relation on A (a) each element of A is related to 

itself; (b) each ordered pair (a, b) is matched by (b, a); 

(c) if aRb and bRc then aRc; (d) the diagonal of the matrix is 

empty; (e) none of these 

7. If R is an antisymmetric relation over A, and if (x, y)  R, 

then (a) x  A; (b) y  A; (c) (y, x)  R; (d) x = y; (e) x  y 

8. Relations that are reflexive, symmetric, and transitive are 

(a) orderings; (b) partitions; (c) equivalence relations; 

(d) functions; (e) nonexistent 

9. An equivalence relation is induced by (a) inference; 

(b) quantifiers; (c) commutativity; (d) numeric equality; 

(e) a partition 

10. Equivalence relations are (a) induced by partitions; (b) equal; 

(c) asymmetric; (d) decidable; (e) intersections 

3. Functions 

1. A reflexive transitive closure is obtained by (a) applying a 

function once; (b) applying a function twice; (c) applying a 

function repeatedly; (d) taking the intersection of two sets; 

(e) taking the union of two sets 

2. If y = f (x) then (a) f is the image of y under x; (b) f is the 

image of y under x; (c) x is the image of f under y; (d) y is the 

image of x under f; (e) (c) y is the image of f under x 

3. If IA is the identity function for set A, then (x  A) IA (x) =  

(a) 0; (b) 1; (c) x; (d) A; (e) IA 

4. A polynomial is a (a) linear function; 

(b) exponential function; (c) sum of power functions; 

(d) numeric value; (e) predicate 

5. A bijection is a(n) (a) partition; (b) binary number; 

(c) one-to-one correspondence; (d) proof; (e) none of these 

6. Any bijection has a(n) (a) identity value; (b) inverse function; 

(c) complement; (d) intersection; (e) transition 

7. ____ injections are bijections (a) all; (b) some; (c) no; 

(d) binary; (e) none of these 

8. ____ surjections are bijections (a) all; (b) some; (c) no; 

(d) binary; (e) none of these 

9.  ____ bijections are injections (a) all; (b) some; (c) no; 

(d) binary; (e) none of these 

10.  ____ bijections are surjections (a) all; (b) some; (c) no; 

(d) binary; (e) none of these 

11. ____ surjections are injections (a) all; (b) some; (c) no; 

(d) binary; (e) none of these 

12. ____ injections are surjections (a) all; (b) some; (c) no; 

(d) binary; (e) none of these 

13. A surjection maps (a) from all elements of its domain; 

(b) no two values to the same result; (c) randomly; (d) to all 

elements of its range; (e) none of these 

14. A relation in which every left-hand member is paired with not 

more than one right-hand member is (a) transitive; 

(b) symmetric; (c) reflexive; (d) a function; (e) none of these 

4. Sequences and languages 

1. A string is a (a) collection; (b) set; (c) tree; (d) sequence; 

(e) list 

2. A language is a (a) string; (b) number; (c) set of numbers; 

(d) sequence of strings;  (e) set of strings 

3. For array A, |A| is (a) the absolute value of the sum of A’s 

elements; (b) the absolute value of A; (c) the smallest element 

of A; (d) the number of elements in A; (e) none of these 

4. An infinite sequence may be defined (a) by enumeration; 

(b) only by formula for n
th

 term; (c) only recursively; 

(d) either by formula or recursively; (e) in propositional logic 

5. When a function returns , it (a) returns 0; (b) returns an 

infinite quantity; (c) is defined; (d) is undefined; 

(e) is random 
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6. When a function returns , it (a) returns 0; (b) returns an 

infinite quantity; (c) is defined; (d) is undefined; 

(e) is random 

7. A sequence over set A is (a) a relation  (A  A); 

(b) a function f : N  A; (c) an element of A  A; 

(d) a language; (e) none of these 

8. The sum of elements of a sequence is de4noted using (a) ; 

(b) ; (c) ; (d) ; (e)  

9. Finite sequences may be represented in computer memory 

using (a) integers; (b) real numbers; (c) arrays; (d) trees; 

(e) classes 

10. In our discussion of languages,  represents (a) a function; 

(b) an alphabet; (c) a symbol; (d) a string; (e) none of these 

11. In our discussion of languages,  is (a) a function; 

(b) an alphabet; (c) a symbol; (d) a string; (e) none of these 

12. An alphabet is a(n) (a) number; (b) string; (c) finite set; 

(d) symbol; (e) infinite set 

13.  is by convention (a) finite; (b) countable; (c) uncountable; 

(d) a sequence; (e) none of these  

14. 0
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of 

length k; (e) all strings over  

15. 1
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of 

length k; (e) all strings over  

16. 2
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of 

length k; (e) all strings over  

17. k
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of 

length k; (e) all strings over  

18. *
 is (a) {}; (b) {(0), (1)}; (c) {00, 01, 10, 11}; (d) strings of 

length k; (e) all strings over  

19. *
 is (a) a number; (b) a symbol; (c) an alphabet; 

(d) a language; (e) none of these  

20. Concatenation of languages is (a) L1 L2; (b) L
*
; (c) L1   L2; 

(d) L1   L2; (e) none of these 

21. Iteration of language is (a) L1 L2; (b) L
*
; (c) L1   L2; 

(d) L1   L2; (e) none of these 

22. Boolean expressions are defined (a) selectively; 

(b) iteratively; (c) recursively; (d) transitively; (e) reflexively 

23. The language of Boolean expressions is (a) free-form; 

(b) a set of numbers; (c) a set of recursively-defined strings; 

(d) the same as regular expressions; (e) a set of proofs in 

predicate logic 

24. An alphabet is (a) finite; (b) infinite; (c) finite or infinite; 

(d) uncountable; (e) none of these 

25. A language is (a) finite; (b) infinite; (c) finite or infinite; 

(d) uncountable; (e) none of these 

26. Regular expressions may be constructed by (a) concatenation, 

selection, and subtraction; (b) addition and iteration; 

(c) addition, selection, and iteration; (d) concatenation; 

(e) concatenation, selection, and iteration 

5. Recurrence relations  

1. The well-ordering principle asserts that if all elements of a set 

exceed some value, k, then (a) the set may be arranged in 

order; (b) a sorting algorithm will work on the set; 

(c) there exists a minimal element of the set; (d) the set is 

finite; (e) the value k is in the set 

2. The Fibonacci numbers are an instance of a(n) (a) finite set; 

(b) recursively defined sequence; (c) undecidable set; 

(d) inductive proof; (e) none of these 

3. Peano defined N (a) by induction; (b) by contradiction; 

(c) by enumeration; (d) by encryption; (e) as a subset of R 

4. Any computable function can be defined (a) by induction; 

(b) by contradiction; (c) by enumeration; (d) by encryption; 

(e) as a subset of R 

5. A recurrence defines (a) a set of natural numbers; 

(b) a logical formula; (c) a computable function; 

(d) an undecidable problem; (e) none of these 

6. A recursive definition (a) uses a while loop; (b) lists all 

possibilities; (c) uses the term defined; (d) is impossible; 

(e) is inefficient 

7. Recurrences are used in (a) input specification; (b) proofs of 

correctness; (c) time analysis; (d) type checking; (e) none 

of these 

8. Recurrences (a) are a form of pseudocode; 

(b) suggest algorithms but not running time; 

(c) suggest running time but not algorithms; 

(d) suggest running time and algorithms; (e) none of these 

9. Recurrences may help in time analysis if we find (a) count of 

iterations of while loop; (b) clock readings; (c) exit condition; 

(d) depth of recursion; (e) none of these 

10. Recurrence relations enable us to use _____ to obtain running 

time (a) empirical tests; (b) loop nesting; (c) base-case 

running time; (d) depth of recursion; (e) base-case running 

time and depth of recursion 

11. The more time-consuming part of the execution of an 

algorithm defined by a recurrence is (a) the base step; 

(b) the recursive step; (c) calculation of the time function; 

(d) proof of correctness; (e) design 

6. Big-O, ,  

1. Vector traversal is O(___) (a) 1; (b) lg n; (c) n; (d) n
2
; (e) 2

n
  

2. A recursive-case running time of (1 + T(n1)) indicates 

____ time (a) constant; (b) logarithmic; (c) linear; 

(d) quadratic; (e) exponential 

3. Function g is an upper bound on function f iff for all x, 

(a) g(x) ≤  f (x); (b) g(x) ≥  f (x); (c) g = O( f ); (d) f = (g); 

(e) none of these 

4. Function g is a lower bound on function f iff for all x, 

(a) g(x) ≤  f (x); (b) g(x) ≥  f (x); (c) f = O(g); (d) g = (f); 

(e) none of these 

5. Big-Omega notation expresses (a) tight bounds; 

(b) upper bounds; (c) lower bounds; (d) worst cases; 

(e) none of these 

6. Big-O notation expresses (a) tight bounds; (b) upper bounds; 

(c) lower bounds; (d) best cases; (e) none of these 

7. Theta notation expresses (a) tight bounds; (b) upper bounds; 

(c) lower bounds; (d) worst cases; (e) none of these 

8. T(n) = O(f (n)) means that (a) algorithm  computes 

function f; (b) algorithm  produces a result in time at least 

f (n) for inputs of size n; (c) algorithm  produces a result in 

time not greater than f (n) for inputs of size n; 

(d) Algorithm T runs in time ; (e) Algorithm f computes 

function T on data  

9. log2n  O(sqrt(n)) means that the logarithm function _____ 

the square root function (a) grows as fast as; (b) grows no 

faster than; (c) grows at least as fast as; (d) is in a mapping of 

real numbers defined by; (e) regardless of parameter produces 

a result smaller than 
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10. Quadratic time is faster than (a) O(1); (b) O(lg n); (c) O(n
2
); 

(d) O(n
3
); (e) none of these 

11. The theorem, T1(n)  O(g1(n))  T2(n)  O(g2(n))  

T1(n) + T2(n)  O(max{g1(n), g2(n)}) says that (a) the slower 

and faster parts of an algorithm together set its running time; 

(b) the faster part of an algorithm dominates in determining 

running time; (c) the slower part of an algorithm dominates in 

determining running time; (d) Algorithm T computes 

functions g1 and g2; (e) Algorithm T finds the maximum of 

g1 and g2 

12. When the running time for the base case of a recursive 

algorithm is O(n) and the remaining part of input to process is 

reduced by one at each recursive step, the total running time 

is (a) O(1); (b) O(lg n); (c) O(n lg n); (d) O(n); (e) O(n
2
) 

13. In a recursive algorithm, when the running time for the base 

case is O(1) and remaining work of an algorithm is reduced 

by one at each step, the running time is (a) O(1); (b) O(lg n); 

(c) O(n lg n); (d) O(n); (e) O(n
2
) 

14. A recursive-case running time of (n + T(n1)) indicates ____ 

time (a) constant; (b) logarithmic; (c) linear; (d) quadratic; 

(e) exponential 

  



David M. Keil CSCI 317: Discrete Structures  Framingham State University 2/14 

 

Terminology for topic 2 (Sets, relations, recurrences) 
antisymmetric relation 

arity 

array  

associative property 

big-O notation 

big-omega notation 

bijection 

Cartesian product  

co-domain 

complement  

contradiction 

disjoint sets 

distributive property 

equivalence class 

equivalence relation 

idempotent property 

identity function 

image of x under f 

index 

injection 

inverse 

language 

linear function 

partial order  

partition  

Peano’s axioms 

power function  

proper subset  

range 

recurrence relation 

reflexive relation 

reflexive transitive 

closure 

relation 

sequence  

surjection 

symmetric relation 

theta notation 

transitive relation 

universal set 

upper bound  

Problems to assess outcomes for topic 2 

2.1a Explain or apply a concept 
in set theory (essential) 

1. What is the universal set? 

2. What is the complement of a set?  

Explain the value and meaning of  

3. (B  A) 

4. (B  A) 

5. A  B 

6. A  B 

7. A – B 

8. A    

9. A   

Let  A = {1, 3, 5, 7}, B = {3, 4, 5}. 

Enumerate: 

10. A  B {3,5} 

11. A  B {1,3,4,5,7} 

12. A – B {1, 7} 

2.1b Prove a theorem in set 
theory (essential) 

Prove that for all sets A, B and C,  

1. (B – A)  B  A
c
 

2. (A  C   B  C)  (A  B)  C 

3. (A – B)  (C – B) = (A  C) – B 

4. (A  B)  (A  C)  (B  C) 

5. A   =  

6. A   = A 

7. if A  B then B
c
  A

c
 

2.2a Describe a relation 
(essential) 

1. Describe a relation between {1, 2} 

and {a, b, c}. 

2. What is meant by a relation between 

sets A and B? 

3. What is meant by a relation on set 

S = {a, b, c, d}? 

4. Enumerate the greater-than relation 

on {1, 2, 3}. 

5. What is the reflexive transitive closure 

of a relation? 

6. For sets A, B, describe (A  B). 

7. What is the largest relation on set A? 

2.2b  Apply the notion of an 
equivalence relation* 

(1-4) Is the relation below an equivalence 

relation? Justify the three parts of 

your answer. 

1. {(1, 2), (2, 1), (1, 3), (3, 1)} 

2. {(0, 0), (0, 1), (0, 2), (1, 2), (2,0)} 

3. {(1, 2), (2, 1), (2, 3), (3, 2)} 

4. {(1, 1), (2, 2), (3, 3), (1, 2), (2,1)} 

5. What is a reflexive relation? 

6. What is a symmetric relation? 

7. What is a transive relation? 

8. What relations are 

equivalence relations? 

9. Describe and name the set of relations 

that partition sets. 

2.3a Describe a function 
(essential) 

1. Distinguish relations from functions. 

2. What are the polynomial functions? 

3. What are the exponential functions? 

4. Distinguish partial from 

total functions. 

5. Distinguish sets from functions. 

6. Distinguish the domain of a function 

from its range. 

7. What is the relationship of f : A  B 

to A × B ? 

8. What are the domain and the range of 

the square-root function? 

9. Explain how the arithmetic operators 

are functions – of what arity? 

10. Distinguish predicates from functions. 

11. Identify and give an example of  

f : N  {F, T} 

Is the following a function? If not, 

why not? 

12. {(1, 2), (2, 1), (2, 3), (3, 1)} 

13. {(0, 0), (1, 1), (2, 2), (2, 3)} 

2.3b Define a class of functions 

1. What is the inverse of an 

exponential function? 

2. What is the identity function? 

3. What is the inverse of the square-

root function? 

4. For f (x), what is the inverse of f, and 

what property does it have with respect 

to f (x)? 

5. Distinguish injections 

from surjections. 

6. What is a bijection? 

2.4a Use a function to define a 
sequence (essential) 

1. Explain how a sequence is a function. 

Write a definition of the function that 

specifies the following sequence: 

2. the powers of 2 

3. the numbers that are each the sums of 

the linear series from 1 to n 

4. the squares of natural numbers 

5. the numbers that are each the product 

of all the whole numbers from 1 to n 

2.4b Define a language 
(essential) 

Using a regular expression, define the 

language of strings over {0, 1} in which  

1. the second symbol is a 1. 

2. two consecutive 0s occur. 

3. an even number of 1’s occur. 

4. the last symbol is 0. 

5. no two consecutive symbols are 

the same. 
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2.5a Describe a recursively 
defined function (essential) 

1. Describe the factorial function. What 

is recursive about it? 

2. What is the name of a particular 

mathematical technique or notation, 

for defining a function, that 

converts straightforwardly into code 

or pseudocode? 

What are the following? What is 

recursive about them? 

3. f (a,b) = 

  0  if a= 0 

  b + f (a1,b) otherwise 

4. h (a,b) = 

  0  if a= 0 

  b  h (a1,b) otherwise 

5. j (a) = 

  0  if a= 0 

  2 + j (a1)  otherwise 

6. g(a,b) = 

  0 if a= 0 

  b + g(a2, 2b)  if a is odd 

  g(a2, 2b) if a is even 

2.5b Write a recurrence to 
define a function 

Use a recurrences to define the 

following functions:.  

1. Sum (A) 
> Computes sum of  
> array elements 

 y  0 

i  1 

while i  |A| 

 y  y + A[ i ] 

  i   i + 1 
return y 

2.  Product (x, y)f 
>Performs multiplication 

result  0 

For i  1 to x 

  result  result + y 
Return result 

3.  Max (A) 
 > Returns largest elt of A 

y  A[1]   

i  1 
while i < |A| 
 if y < A[ i ] 

  y  A[ i ] 

 i   i + 1 
 return y 

4.  Pow (a, b) 
> returns ab 

y  a 

i  1 
while i < b 

 y  a   y 

  i   i + 1 
return y 

5. Fact (x) 
    > Computes factorial: 

y  1 

i  1 
while i < x 

 y  i  y 

  i   i + 1 
return y 

2.6a Define O, , and  notation 

1. What is the main notation for 

expressing the complexity of 

algorithms as tight bounds? How does 

it compare with the other commonly 

used notations? 

2. For function f, define and 

describe O(f). 

3. What is the main notation for 

expressing the complexity of 

algorithms as upper bounds? How 

does it compare with the other 

commonly used notations? 

4. For function f, define and 

describe (f). 

5. What is the main notation for 

expressing the complexity of 

algorithms as lower bounds? How 

does it compare with the other 

commonly used notations? 

6. For function f, define and 

describe (f). 

7. Use two simple formulas to show the 

relation among O, , and  notations. 

(Hint: if f (n)  (g(n)), 

what follows?) 
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Multiple-choice questions on Topic 3 (Graphs) 

1. Graphs 

1. A graph is (a) a set of integers; (b) a set of vertices; 

(c) a set of vertices and a set of edges; (d) a set of edges; 

(e) a set of paths 

2. The degree of a vertex in a graph is (a) the number of vertices 

in its graph; (b) the number of edges in its graph; 

(c) the number of paths; (d) the number of distinct connected 

subgraphs; (e) the number of other vertices adjacent to it 

3. A graph is defined in part by (a) exactly one ordered pair of 

vertices; (b) a relation; (c) a cycle; (d) one path joining each 

pair of vertices; (e) none of these. 

4. A series of edges that connect two vertices is called 

(a) a path; (b) a cycle; (c) a connection; (d) a tree; 

(e) a collection 

5. To design a communications network that joins all nodes 

without excessive lines, we must find a (a) path; 

(b) connectivity number; (c) minimal spanning three; 

(d) expression tree; (e) search tree 

6. A repeating series of edges that form a path from a vertex to 

itself is (a) a spanning path; (b) a cycle; (c) a connection; 

(d) a tree; (e) an edge 

7. A weighted graph has an adjacency matrix that is (a) integers; 

(b) vertices; (c) real numbers and ; (d) booleans; (e) none 

of these 

8. The prerequesite relationships among required courses in the 

Computer Science major form a (a) binary tree; 

(b) linked list; (c) directed acyclic graph; (d) weighted graph; 

(e) spanning tree 

9. A tree is a graph that is (a) connected and cyclic; 

(b) connected and acyclic; (c) unconnected and cyclic; 

(d) unconnected and acyclic; (e) none of these 

10. A graph may be fully represented by (a) its vertices; 

(b) its edges; (c) an adjacency matrix; (d) the degrees of its 

vertices; (e) none of these 

11. The breadth-first search (a) uses a queue; (b) uses a stack; 

(c) searches an array; (d) searches a tree; (e) none of these 

12. The depth-first search (a) uses a queue; (b) uses a stack; 

(c) searches an array; (d) searches a tree; (e) none of these 

2. Graph isomorphism 

1. Graph path search involves finding a (a) set of vertices; 

(b) sequence of vertices; (c) set of edges; (d) minimal set of 

edges; (e) none of these 

2. Two graphs are isomorphic iff (a) they have the same 

numbers of vertices and edges; (b) they have the same 

degrees; (c) bijections of a special kind exist between their 

sets of vertices and edges; (d) they have no vertices in 

common; (e) one is a subgraph of the other 

3. Graphs for which bijections of a special kind exist between 

their sets of vertices and edges are (a) nested; (b) transitive; 

(c) undecidable; (d) disjoint; (e) isomorphic  

4. Graphs that have the same structure are (a) nested; 

(b) transitive; (c) undecidable; (d) disjoint; (e) isomorphic  

5. Graph isomorphism invariant properties include 

(a) having the same numbers of vertices and edges; 

(b) satisfiability; (c) reachability; (d) well ordering; 

(e) well foundedness 

3. Transition systems 

1. A transition system is defined by (a) a set of states and a 

relation on them; (b) a set of points and a mapping among 

them; (c) a set of symbols and rules for sequencing them; 

(d) a set of strings; (e) none of these 

2. A transition system is (a) an interactive system; (b) a labeled 

graph denoting states and transitions; (c) an algorithm; 

(d) a set of equations; (e) a language 

3. A state-transition system with probabilistic transitions is a(n) 

(a) semantic net; (b) Bayesian net; (c) finite automaton; 

(d) Turing machine; (e) Markov chain 

4. Transitions that are probability functions of a current state 

characterize (a) finite automata; (b) Bayesian networks; 

(c) schemas; (d) Markov models; (e) none of these 

5. In our discussion of DFAs,  is (a) a function; 

(b) an alphabet; (c) a symbol; (d) a string; (e) none of these 

6. The reflexive transitive closure of  maps from (a) states to 

states; (b) states and symbols to states; (c) states and strings 

to states; (d) states and symbols to symbols; (e) none of these 

7. Whether a certain string belongs to the language recognized 

by a finite automaton is determined by (a) the output; 

(b) the transition; (c) whether the automaton terminates; 

(d) whether the automaton terminates in an accepting state; 

(e) none of these 

8. For each finite automaton there exist(s) ___ corresponding 

language(s) (a) no; (b) one; (c) two; (d) some finite number 

of; (e) infinitely many 

9. The Turing machine model is said to capture (a) regular 

languages; (b) interaction; (c) efficient computation; 

(d) algorithmic computation; (e) all of these 

10. A Turing machine has ____ storage (a) random-access; 

(b) limited; (c) unbounded; (d) stack; (e) queue 

11. A Turing machine (a) lacks an alphabet; (b) has tape instead 

of states; (c) can compute any mathematical function; 

(d) stores data on a tape; (e) none of these 

4. Structural induction 

1. Structural induction may be used to show properties of 

(a) sets of integers; (b) real numbers; (c) sets of strings; 

(d) algorthms; (e) none of these 

2. We may use _____ to prove that all elements of a certain 

language have equal numbers of left and right parentheses 

(a) contradiction; (b) enumeration; (c) counter example; 

(d) structural induction; (e) strong induction 
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Terminology for topic 3 (Graphs and transition systems) 
acyclic graph  

adjacency matrix 

computation tree 

Computation Tree Logic  

connected graph 

cycle 

degree  

digraph 

edge  

finite automaton 

finite transducer  

graph  

isomorphism 

Kripke structure 

Markov assumption 

Markov decision process 

Markov model 

matrix  

minimal spanning tree 

model checking 

path 

pushdown automata 

reactive system 

reflexive transitive 

closure  

regular expression  

regular language 

structural induction 

subgraph  

temporal logic 

transition function 

transition system  

Turing machine 

weighted graph  

Problems to assess outcomes for topic 3   

3.1a Construct a graph from a description 
(essential) 

Draw a graph of the following:  

1. {(1, 2), (2, 1), (1, 3), (3, 1)} 

2. {(0, 0), (0, 1), (0, 2), (1, 2), (2,0)} 

3. {(1, 2), (2, 1), (2, 3), (3, 2)} 

4. {(1, 1), (2, 2), (3, 3), (1, 2), (2,1)} 

Draw a graph with these properties: 

5. Five vertices of degrees 1, 3, 3, 1, 2 

6. Five vertices of degrees 1, 2, 3, 2, 2 

7. Six vertices of degrees 2, 2,  3, 3, 2, 2 

8. Draw the digraph with vertices {a, b, c} and with the 

following adjacency matrix: 

    
   
   
   

 

9. What is the adjacency matrix of the following graph?  

 

3.1b Describe a basic concept of graph theory 
(essential) 

1. What is a path? Give a special classes of paths. 

2. What is a cycle? 

3. What is the degree of a vertex; of a graph? 

4. When is G´ = (V´, E´) a subgraph of G = (V, E)? 

5. Describe the adjacency matrix of a weighted graph. 

3.2 Apply the concept of graph isomorphism 

If two graphs side by side below are isomorphic, then give the two 

functions that define an isomorphism. Otherwise, give an 

isomorphism invariant not shared by them. 

1.  

 
2.  

 

3.  

 
4.  

 
5.  

 

3.3 Describe a transition system (priority) 

1. Describe the components and execution of a 

transition system. 

2. Describe the steps taken by the transition system below on 

inputs 1000; 1100. 

 
3. How many states does the transition system below have? 

Is the language it accepts finite or infinite? Why? 

 
4. What are the states of the system below? In what way are 

certain ones different from the others in a way that affects the 

output of the system? 

 
5. Give the transition function of the transition system above. 
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3.4  Use structural induction to prove an assertion 
about graphs (priority) 

Let graph G = (V, E), where |G| is the number of vertices and 

edges; |V| is the number of vertices; |E| is the number of edges. 

Prove by structural induction: 

1. For any graph, the sum of the degrees of the vertices is even. 

2. For any graph, the number of vertices with odd degree 

is even. 

3. If G is a connected graph with n vertices and (n – 1) edges, 

then G is acyclic.  

4. Removing an edge from a acyclic graph yields a graph that is 

not connected. 

5. The sum of the degrees of all vertices in a graph is twice the 

number of edges. 

6. The result of removing an edge from an acyclic graph adds 

one to its connectivity number. 

 



David M. Keil CSCI 317: Discrete Structures  Framingham State University 2/14 

 

Multiple-choice questions on Topic 4 (Trees) 
1. Properties of trees  

1. To model a hierarchy, it is most convenient to use a(n) 

(a) simple type; (b) array; (c) linked list; (d) binary search 

tree; (e) general tree 

2. A tree has no (a) edges; (b) vertices; (c) paths; (d) cycles; 

(e) connectivity 

3. A node in a tree that is the child of no other node is called the 

(a) leaf; (b) parent; (c) root; (d) ancestor; (e) none of these 

4. A leaf node is one without (a) data; (b) children; (c) a parent; 

(d) references pointing to it; (e) none of these 

5. The maximum path length from the root to a leaf is a tree’s 

(a) degree; (b) connectivity number; (c) depth; 

(d) edge count; (e) vertex count 

6. In a tree, any two vertices are connected by ____ distinct path 

or paths. (a) no; (b) exactly one; (c) one or more; (d) many; 

(e) exactly two 

7. A root vertex in a tree may have (a) a parent; (b) siblings; 

(c) children; (d) decidability; (e) mentors 

8. A binary tree has (a) one branch; (b) two vertices; 

(c) two paths; (d) exactly two edges from each vertex; 

(e) up to two edges from each vertex 

9. A structure that is connected and contains all the vertices in a 

weighted graph is (a) a coloring; (b) a path; (c) a spanning 

tree; (d) a single-source shortest path; (e) a depth-first 

traversal 

10. A minimal spanning tree can be found by 

(a) subtracting edges greedily; (b) adding edges greedily; 

(c) seeking the shortest path; (d) recursive traversal; 

(e) none of these 

2. Using tree efficiency 

1. The depth of the decision tree for an algorithm expresses its 

(a) correctness; (b) problem class; (c) running time; 

(d) space requirement; (e) data arrangement 

2. A full binary tree with k leaves has height (a) k; (b) 2
k
; (c) 2k; 

(d) log2k; (e) none of these 

3. A logarithmic function is the inverse of an ___ function 

(a) addition; (b) exponential; (c) reciprocal; 

(d) multiplication; (e) factorial 

4. The inverse of an exponential function is a (a) difference; 

(b) reciprocal; (c) division; (d) logarithm; (e) power 

5. The depth of a heap of size n is close to (a) 1; (b) log2n; 

(c) the square root of n; (d) n / 2; (e) n
2
 

6. After each step of the BST search, the quantity of remaining 

data to be searched is on average (a) 1; (b) lg n; (c) n  2; 

(d) n; (e) 2n 

7. The height of a BST is on average O(__) (a) 1; (b) lg n; (c) n; 

(d) n lg n; (e) n
2
 

8. After each step of the binary search, the quantity of 

remaining data to be searched is on average (a) 1; (b) lg n; 

(c) n  2; (d) n; (e) 2n 

9. A structure that shows possible outcomes of all steps of a 

computation is a (a) flowchart; (b) module hierarchy; 

(c) binary tree; (d) decision tree; (e) none of these 

10. When the quantity of remaining data to be processed in an 

algorithm, at each step, is (n  2), the complexity is O(___) 

(a) 1; (b) lg n; (c) n; (d) n
2
; (e) 2

n
 

11. A recursive-case running time of (1 + T(n2)) indicates ____ 

time (a) constant; (b) logarithmic; (c) linear; (d) quadratic; 

(e) exponential 

12. A recursive-case running time of (n + T(n2)) indicates ____ 

time (a) constant; (b) n lg n; (c) linear; (d) quadratic; 

(e) exponential 

13. When base case is O(n) and remaining work of an algorithm 

is cut in half at each step, the running time is (a) O(1); 

(b) O(lg n); (c) O(n lg n); (d) O(n); (e) O(n
2
) 

14. Decrease by constant factor is consistent with T (n) = 

(a) T(n – 1) + O(1); (b) T(n – 1) + O(n); (c) T (n / b) + O(1); 

(d) 2T (n – 1) + O(1); (e) none of these 

15. T(n) = T(n / b) + f (n) is consistent with (a) decrease by 

constant; (b) decrease by one; (c) decrease by constant factor; 

(d) O(n
2
); (e) O(n) 

16. When base case is O(1) and remaining work of an algorithm 

is cut in half at each step, the running time is (a) O(1); 

(b) O(lg n); (c) O(n lg n); (d) O(n); (e) O(n
2
) 

17. The Master Theorem (Main Recurrence Theorem) (a) is used 

to prove correctness of algorithms; (b) gives general solutions 

to time recurrences for divide-and-conquer algorithms; 

(c) gives intractability results; (d) is proven by temporal 

logic; (e) none of these 

18. Binary search can be shown to be (lg n) by 

(a) Hoare triples; (b) temporal logic; (c) predicate logic; 

(d) the Master Theorem (Main Recurrence Theorem); 

(e) induction 

3.  Applications of trees in AI and bioinformatics 

1. A state space is a set of (a) paths; (b) locations in the physical 

universe; (c) governmental entities; (d) actual arrangements 

of values; (e) possible arrangements of values 

2. Games and puzzles are simple examples of 

(a) embodied intelligence; (b) state-space search; 

(c) inference; (d) agent interaction; (e) adaptation 

3. A set of possible arrangements of values is a(n) 

(a) state space; (b) path; (c) combination; 

(d) random variable; (e) none of these 

4. A state space is (a) part of RAM; (b) one set of variable 

assignments; (c) a set of possible arrangements of values; 

(d) a graph; (e) none of these 

5. In a game tree, vertices are (a) cities; (b) players; (c) moves; 

(d) board positions; (e) pieces 

6. A phylogenetic tree represents (a) an algorithm; (b) a data 

structure; (c) a taxonomy; (d) a game; (e) a problem 

7. Applications in bioinformatics make use of ___ trees to 

determine ancestry (a) evergreen; (b) decision; 

(c) phylogenetic; (d) binary-search; (e) complete binary 
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Terminology for topic 4 (Trees) 
binary search  

binary search tree 

binary tree 

BST 

child  

complete binary tree  

decision trees  

exponential function 

full binary tree 

game trees  

heap 

height 

internal vertex 

leaf 

level  

logarithmic function 

m-ary tree 

Master Theorem  

parent  

root  

rooted tree  

state-space search   

subtree  

tree 

 

Questions to assess outcomes for topic 4
4.1a Draw a tree with given 

specifications  (priority) 

Draw a tree with  

1. six vertices, at least one of which is 

neither a root nor a leaf. 

2. six vertices, one of which is of 

degree 3. 

3. five vertices, at least one of which is 

both a root and a leaf. 

4. six vertices, four of which are 

leaf nodes. 

5. seven vertices that is a complete 

binary tree 

6. five vertices, two of which are leaves 

7. three leaves, that is a subgraph of 

the following: 

 

4.1b Describe and prove a 
property of trees  (priority) 

Prove by induction: 

1. If a graph G = (V, E) is connected, and 

|V| = |E| + 1, then G is a tree.  

2. Any graph has a subgraph that is 

a tree. 

3. Any tree with more than one vertex 

has a vertex of degree one. 

4. Exactly one path joins any pair of 

vertices in a tree. 

5. Removing an edge from a tree 

disconnects it.  

6. Adding an edge to a tree creates 

a cycle.  

7. For any full m-ary tree (tree in which 

every non-leaf node has exactly m 

children) T, | T | mod m = 1.  

8. For any tree T = (V, E), | V | = | E | + 1. 

9. There is exactly one path between any 

two vertices in a tree. 

10. The height of a complete binary tree 

with n vertices is log2n. 

11. Every full binary tree has 2
k
1 

vertices, where k is the depth of 

the tree. 

12. Any tree with more than one vertex 

has more than one vertex of degree 1. 

4.2a Explain the running time 
of a tree-enabled algorithm 
(priority) 

In terms of the number of vertices, explain 

the running time of 

1. BST search (average case) 

2. traversing a path of a heap from the 

root to a leaf. 

3. BST insertion (average case) 

4. deleting all items from a balanced BST 

of height n 

5. descending from the root to a leaf of a 

balanced tree with 2
n
 nodes 

6. performing addition on pairs of binary 

numerals that range in value from 

0 to n 

7. the binary-search algorithm  

(8-9) Give the complexities of the 

algorithms below and justify your answers. 

8.  Alg-1 (root, key)  
If root = null 
  return false  
If data (root) = key  

  return true  
otherwise  
  if data(root) > key  

   return Alg-1 (left (root), key)) 
  otherwise  
   return Alg-1 (right (root), key)) 

9. Alg-2 (A, first, last)  
 if first > last   // (i.e., nothing to search) 
  return false  
 else 

  middle  (first + last)  2 
 if A[middle] matches key 
  return true 
 otherwise 
  if A[middle] > key 
   return Alg-4(A, first, middle - 1, key) 
  else 

   return Alg-4 (A, middle + 1, last, key) 

4.2b Apply the Master Theorem 
to solve a recurrence 

Use the Master Theorem
1
 to derive a 

tight-bound () solution to the following 

recurrences. Show your work. 

1. T(n) = 3T(n / 2) + (n)  

2. T(n) = 2T(n / 2) + (1)  

3. T(n) = 4T(n / 3) + (n
2
)  

4. T(n) = T(n) + (lg n)  

5. T(n) = 3T(n / 2) + (n
2
)  

6. T(n) = 2T(n / 2) + (n lg n)  

7. T(n) = 3T(n / 3) + (1)  

8. T(n) = 3T(n / 5) + (n
3
)  

9. T(n) = 4T(n / 2) + (1/n)  

10. T(n) = 3T(n / 4) + (1)  

4.3 Describe an AI or 
bioinformatics application 
of trees  

(1-3) Describe the following and how they 

are used. 

1. game trees 

2. phylogenetic trees 

3. decision trees 

4. What does a tree represent in state-

space search? Describe its role. 

5. Describe how trees may be used in 

bioinformatics, with specific reference 

to tree structure. 

6. Describe the tree structure of the state 

space search in tic tac toe. 

7. Describe the tree structure of the state 

space to search in the game of chess. 

                                                           
1
  Let T(n) = aT(n/b) + f (n), with f (n)  (nd), d  

0. Then T(n)  (nd), if a < bd; (nd lg n), if a = bd; 

(n logba), if a > bd 
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Multiple-choice questions on Topic 5 (Countability) 

1. Countable sets  

1. An alphabet is (a) finite; (b) infinite; (c) finite or infinite; 

(d) uncountable; (e) none of these 

2. The set of strings of length k, over a finite alphabet, for 

given constant k, is (a) countably infinite; (b) finite; 

(c) uncountable; (d) undecidable; (e) none of these 

3. Two sets have the same cardinality if (a) they are both 

finite; (b) neither is strictly included in the other; 

(c) a bijection exists between them; (d) they are both 

infinite; (e) none of these 

4. The natural numbers (a) can be paired up with the reals; 

(b) are countable; (c) are uncountable; (d) are as 

numerous as any set; (e) none of these 

5. 
*
 is (a) finite; (b) countable; (c) uncountable; 

(d) an alphabet; (e) none of these  

6. A language is (a) finite; (b) infinite; (c) finite or infinite; 

(d) uncountable; (e) none of these 

7. Two sets have the same cardinality iff there is a ____ 

between them (a) relation; (b) bijection; (c) function; 

(d) assertion; (e) injection 

8. The cardinality of the set of natural numbers is ____ the 

cardinality of the set of rational numbers (a) the same as; 

(b) greater than; (c) less than; (d) not comparable to; 

(e) none of these 

9. The set of natural numbers is (a) indescribable; (b) finite; 

(c) countably infinite; (d) uncountably infinite; (e) none 

of these 

10. The set of Java programs is (a) small; (b) finite 

in number; (c) countable; (d) uncountable; (e) tested  

11. Enumerability is an attribute of ____ sets (a) no; (b) all; 

(c) all infinite; (d) all countable; (e) none of these 

12. Which of these sets is countable? i. strings   ii. streams    

iii natural numbers   iv real numbers. (a) i and ii; 

(b) i and iii; (c) ii and iii; (d) ii and iv; (e) none of these 

13. Cantor showed that the reals are (a) infinite; 

(b) countable; (c) uncountable; (d) dense; (e) none 

of these 

14. Cantor’s proof about the cardinalities of real and natural 

numbers was by (a) induction; (b) diagonalization; 

(c) construction; (d) statistical methods; (e) none of these 

15. What proof method was used by Cantor to show that the 

reals are uncountable? (a) inductive; (b) diagonal; 

(c) constructive; (d) immediate; (e) none of these 

16. A diagonal proof is by (a) induction; (b) contradiction; 

(c) construction; (d) statistical methods; (e) none of these  

17. By what proof method was it shown that the real numbers 

are uncountable? (a) direct; (b) induction; (c) diagonal; 

(d) counter-example; (e) none of these 

18. The cardinality of the set of real numbers is ____ the 

cardinality of the set of rational numbers (a) the same as; 

(b) greater than; (c) less than; (d) not comparable to; 

(e) none of these 

19. The set of real numbers is (a) indescribable; (b) finite; 

(c) countably infinite; (d) uncountably infinite; (e) none 

of these 

20. We can disprove the existence of an enumeration of all 

the real numbers by assuming an enumeration exists and 

defining real whose nth digit, for all n, is different from 

____ digit of the n the real in the supposed enumeration 

(a) each; (b) the first; (c) the nth; (d) the (n+1)th; 

(e) the last 

21. The number of predicates on a set of cardinality n is (a) n; 

(b) 2n; (c) n
2
; (d) 2

n
; (e) none  

22. The predicates on natural numbers are (a) few; 

(b) finite in number; (c) countable; (d) uncountable; 

(e) none  

2. Incompleteness  

1. Soundness is (a) completeness; (b) validity; 

(c) consistency; (d) truth; (e) provability 

2. A logical system in which no false assertion can be 

proven is (a) consistent; (b) complete; (c) ambiguous; 

(d) paradoxical; (e) none of these 

3. Godel showed that every consistent system is (a) true; 

(b) unsound; (c) incomplete; (d) ambiguous; (e) sound 

4. A logical system in which every true assertion can be 

proven is (a) consistent; (b) complete; (c) ambiguous; 

(d) paradoxical; (e) none of these 

5. Gödel numbers (a) are cardinalities; (b) are reals; 

(c) encode assertions; (d) encode programs; (e) none 

of these 

6. Gödel’s incompleteness theorem was proven by 

(a) induction; (b) diagonalization; (c) construction; 

(d) statistical methods; (e) none of these 

7. A logical system is complete iff (a) every assertion is true; 

(b) every assertion is provable; (c) every true assertion is 

provable; (d) no false assertion is provable; (e) a theorem 

exists for every proof 

8. A logical system is consistent iff (a) every assertion is 

true; (b) every assertion is provable; (c) every true 

assertion is provable; (d) no false assertion is provable; 

(e) a theorem exists for every proof 

9. Completeness is ___ soundness (a) equivalent to; 

(b) stronger than; (c) weaker than; (d) incompatible with; 

(e) dependent on 

10. A system in which every true assertion is provable is 

(a) satisfiable; (b) valid; (c) complete; (d) consistent; 

(e) sound 

3. Recursive functions 

1. Algorithmically computable functions are the same as 

(a) those computable on a DFA; (b) those computable on 

a PDA; (c) -recursive functions; (d) control devices; 

(e) none of these 

2. The basic primitive recursive functions include 

(a) successor; (b) addition; (c) multiplication; 

(d) composition; (e) recursion 

3. The ___ function is not a basic primitive recursive 

function (a) factorial; (b) zero; (c) successor; 

(d) projection; (e) predecessor 

4. One computable operation on primitive recursive 

functions is (a) inverse; (b) search; (c) composition; 

(d) integration; (e) none of these 
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5. Obtaining a function by primitive recursion is a way to 

show that the function is (a) continuous; (b) a predicate; 

(c) computable; (d) uncomputable; (e) none of these 

6. The result of minimalization of a primitive recursive 

function is (a) primitive recursive; (b) computable; 

(c) minimal; (d) undecidable; (e) none of these 

7. All computable functions f : 
*
 

*
  are 

(a) primitive recursive; (b) -recursive; (c) compositions; 

(d) undefined; (e) predicates 

8. The composition of two computable functions is 

(a) computable; (b) undefined; (c) time consuming; 

(d) uncomputable; (e) uncountable 

9. Primitive recursion is a way to implement (a) interaction; 

(b) negation; (c) loops; (d) branches; (e) infinite sets 

4. Undecidable problems 

1. f (x) means (a) f (x) is descending as x rises; 

(b) f (x) is unknown; (c) f  is defined for parameter x; 

(d) f is undefined for parameter x; (e) none of these 

2. f (x) means (a) f (x) is descending as x rises; 

(b) f (x) is unknown; (c) f  is defined for parameter x; 

(d) f is undefined for parameter x; (e) none of these 

3. Any computable function can be computed by some 

(a) DFA; (b) NFA; (c) PDA; (d) Turing machine; 

(e) none of these  

4. Any computable function can be computed by some 

(a) DFA; (b) NFA; (c) PDA; (d) Java program; 

(e) none of these  

5. Decision problems are equivalent to functions that return 

(a) natural numbers; (b) strings; (c) truth values; 

(d) Turing machines; (e) none of these 

6. The Halting Problem involves (a) testing a Turing 

machine to see if it halts; (b) determining from the 

description of a TM whether it halts; (c) determining how 

to change the transition function of a TM to cause it to 

halt; (d) determining what a TM outputs; (e) causing a 

TM to halt 

7. The standard proof that the Halting Problem is 

undecidable is by (a) induction; (b) indirection; 

(c) contradiction; (d) indirection; (e) none of these 

8. The Halting Problem (a) is decidable; (b) provides an 

example of a language that no TM accepts; 

(c) is exponential-time; (d) is a machine; (e) none of these 

9. Uncomputable functions correspond to problems that are 

called (a) undecidable; (b) intractable; (c) P-time; 

(d) optimization; (e) none of these 

10. The Halting Problem is (a) undecidable; (b) intractable; 

(c) NP-complete; (d) optimization; (e) none of these 

11. Decision problems can also be considered as 

(a) formulas in propositional logic; (b) assertions; 

(c) array manipulations; (d) languages; (e) none of these 

12. P is (a) a problem; (b) an algorithm; (c) the function 

computed by program P; (d) the time function of 

program P; (e) none of these 

5. Non-well-founded sets and coinduction  

1. Induction is used to define (a) branch control structures; 

(b) finite objects; (c) infinite objects; (d) finite sets; 

(e) none of these 

2. Coinduction is used to define sets of (a) branch control 

structures; (b) finite objects; (c) infinite objects; 

(d) finite sets; (e) none of these 

3. A coinductive definition has no (a) base case; 

(b) inductive case; (c) endpoint; (d) purpose; 

(e) none of these 

4. Coinduction may define sets of (a) numbers; 

(b) programs; (c) proofs; (d) strings; (e) streams 

5. The wellfoundedness axiom states that the notion of a set 

belonging to itself is (a) well-founded; (b) meaningless; 

(c)  doubtful; (d) mandatory; (e) none of these 

6. 

 is a set of (a)  numbers; (b) symbols; (c) strings; 

(d) streams; (e) none of these 

7. 

 is (a) finite; (b) countable; (c) uncountable; 

(d) an alphabet; (e) none of these 
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Terminology for topic 5 (Countability and computability)  
Anti-Foundation Axiom 

bijection  

bounded minimalization  

cardinality  

coinduction 

completeness 

composition of functions 

computable 

countable set 

diagonal proof 

finite set  

Foundation Axiom 

Gödel’s theorem  

HALT problem 

incompleteness 

infinite set 

injection 

minimalization  

-recursive function 

non-well-founded set 

one-to-one 

correspondence 

one-to-one function 

onto function 

primitive recursive 

function 

recursion theory 

recursively definable 

soundness  

stream 

surjection 

uncomputable function 

uncountable set 

undecidable problem 

Problems to assess outcomes for topic 5 

5.1a Prove that a set is countable (priority) 

Show that the following sets are countable:  

1. binary numerals 

2. pairs of natural numbers 

3. natural numbers that are multiples of 5 

4. English-language sentences 

5. Java programs 

6. formulas in predicate logic 

7. proofs in predicate logic 

8. rational numbers 

9. finite bit vectors 

10. prime numbers 

11. even numbers 

12. numbers with an even number of digits 

13. squares of natural numbers 

5.1b Prove that a set is uncountable  (priority) 

For #1-5, use the diagonal method to show uncountability of the 

following sets: 

1. predicates over natural numbers  

2. real numbers  

3. predicates over strings  

4. the set of sets of natural numbers  

5. languages over an alphabet  

6. infinite sequences of ordered pairs of natural numbers  

7. Explain what this diagram is used to show.  

 
8. Consider the set of infinite streams of ASCII characters.  

(a) Show that it is uncountable.  

(b) Name the proof method 

(c) For each and every sequence in this set, does there exist a 

Java program with no input, but with an infinite output loop, 

that outputs the sequence? Why or why not? 

9. Consider a mobile robot that at each step of its existence, 

must decide whether to turn left or right 5 degrees, or go 

forward, based on its percept and state at that instant. Define 

a robot’s output behavior as a set of infinite sequences of 

outputs in the set {left, forward, right}. Use Cantor’s 

diagonal proof method to show that the set of all possible 

robot behaviors is uncountable.  

10. Answer the following “refutation” of Cantor’s proof: “Look, 

you show me a particular ordering of strings and prove that 

this enumeration omits some real number. So one way to list 

all real numbers fails by being incomplete. So what? Maybe 

someone could come up with a different ordering that would 

include all reals.” 

5.2 Describe the Incompleteness Theorem  

1. What is incompleteness and what did Gödel’s theorem say 

about it?  

2. Describe Gödel’s incompleteness theorem. 

3. For a consistent system of logic, with arithmetic, 

what is a limit on what can be proven in the system? 

Give an example. 

4. In your own words, what is asserted in the proof of 

Gödel’s Incompleteness theorem? 

5. Define consistency and completeness. What systems of logic 

have both? 

5.3 Explain how recursion captures computability 
(priority) 

1. Explain the relationship between primitive recursion and 

algorithmic computability.  

2. Define the zero function and relate to primitive recursion.  

3. Define the successor function and relate to 

primitive recursion.  

4. Distinguish primitive recursion from composition. 

5. Define the set of projection functions and relate to 

primitive recursion. 

6. Define the primitive-recursion operation.  

7. Describe how the logarithm function might be obtained from 

subtraction and division by primitive recursion. 

8. What proof approach might show that a certain set of Java 

programs is equivalent to the -recursive functions? 

Describe. 

9. How is the algorithmic notion of repetition implemented in 

recursive function theory? Give an example. 

10. Explain the notion of composition in recursive function 

theory, and tell why we can say that the primitive-recursive 

functions are closed under composition. 

Use operations on functions to show that the following are 

-recursive 

11. multiplication 

12. subtraction 

13. division 

14. exponentiation 

15. logarithm 

16. finding the smallest x > 5, such that x
3
 is odd 
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5.4  Prove that a problem is undecidable  

1. Compare and contrast the diagonal proofs by Cantor 

(cardinality of reals is greater than that of natural numbers) 

and Turing (some problems are uncomputable). What basic 

proof method do they share?  

2. Briefly explain why no program or algorithmic machine can 

solve the halting problem. 

3. A program is correct if it satisfies the program’s 

specification. Is it possible to write a program that determines 

the correctness of another program? Explain. 

4. Describe the program S that is used as a counter-example in 

the proof of undecidability of the halting problem. 

5. What is wrong with the following? “It is easy to solve the 

Halting Problem. Just compile the code in question and see if 

it halts. If it does, output ‘yes’, otherwise ‘no’.” 

5.5 Define a non-well-founded set coinductively 

Using set notation, define of the set of infinite sequences of   

1. bits 

2. decimal digits 

3. truth values 

4. symbols chosen from the alphabet A 

5. pairs of bits.  

6. pairs of symbols from alphabet .  

7. input pairs of integers (x1, x2) and output values y.  

8. symbols from alphabet . 

Consider the set of infinite sequences of inputs and outputs, when 

inputs are pairs of strings of symbols in the set DIGITS (‘0’ .. ‘9’), 

and outputs are strings of DIGITS. 

9. Formally define the set of output strings.  

10. How many different input pairs exist? 

11. How many different output strings? 

12. Formally define the set of infinite sequences of input/output 

pairs of natural numbers.  

13. Formally define the set of infinite sequences of input pairs 

and output strings. 
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Multiple-choice questions on Topic 6 (Combinatorics) 

1. Combinatorics and counting 

1. A possibility tree diagrams (a) the likelihood of one 

outcome; (b) a series of events, each with n possible 

outcomes; (c) one event with n outcomes; (d) a linear series 

of events and outcomes; (e) none of these 

2. By the Multiplication Rule, a series of k events, each with n 

possible outcomes, has ____ paths through its possibility tree 

(a) 1; (b) k; (c) n; (d) n
k
; (e) k

k
 

3. A four-character PIN number, with 36 possibilities for each 

character, has ____ possible values (a) 4; (b) 36; (c) 4
36

; 

(d) 36
4
; (e) 36! 

4. For finite disjoint sets A and B, |A  B| = (a) |A| + |B|; 

(b) max{|A|, |B|}; (c) |A  B|; (d) |A| |B|; (e) |A| + |B|  |A  B| 

5. The Pigeonhole Principle states that if |A| > |B| then 

(a) f : A  B is bijective; (b) f : A  B is surjective; 

(c) f : A  B is injective; (d) f : A  B is not injective; 

(e) f : A  B is not surjective 

6. The assertion that, if |A| > |B| then no injection from A to B 

exists, is called (a) inconsistency; (b) incompleteness; 

(c) uncountability; (d) undecidability; (e) the Pigeonhole 

Principle 

7. The possible orderings of elements of a set are 

(a) truth values; (b) numbers; (c) sets; (d) combinations; 

(e) permutations 

8. The possible unordered selections from a set are 

(a) truth values; (b) numbers; (c) sets; (d) combinations; 

(e) permutations 

9. Permutations are ___ of a set (a) the elements; 

(b) the possible orderings of elements; (c) the sizes of 

subsets; (d) the subsets; (e) ways to describe elements 

10. There are ____ permutations for n objects taken k at a time 

(a) n; (b) n!; (c) (n – k)! / n!; (d) n! / (n – k)!; 

(e) n! / ((n – k)! k!) 

11. ___ are ordered (a) permutations; (b) combinations; (c) sets; 

(d) subsets; (e) none of these 

12. Combinations are ___ of a set (a) the elements; 

(b) the possible orderings of elements; (c) the sizes of 

subsets; (d) the subsets; (e) ways to describe elements 

13. Combinations are expressed as (a) C(n, k); (b) n
k
; (c) n!; 

(d) n! / k!; (e) k
k
 

14. There are ____ combinations for n objects taken k at a time 

(a) n; (b) n!; (c) (n – k)! / n!; (d) n! / (n – k)!; 

(e) n! / ((n – k)! k!) 

15. ___ are unordered (a) permutations; (b) combinations; 

(c) sequences; (d) hierarchies; (e) none of these 

16. C(n, k) is also known as (a) permutations; 

(b) binomial coefficients; (c) Stirling numbers; (d) factorials; 

(e) a multiset 

17. A multiset is a(n) (a) permutation; (b) ordered set; 

(c) r-combination with repetition allowed; (d) expression of 

probability; (e) exponential expression 

18. An r-combination with repetition allowed is a 

(a) permutation; (b) ordered set; (c) multiset; 

(d) random variable; (e) expression of probability 

2. Intractability 

1. Intractable problems (a) are undecidable; (b) lack acceptable 

approximate versions; (c) take an unacceptably long time 

to solve; (d) lack solutions; (e) are easily solved 

2. Exponential time is closely associated with (a) tractability; 

(b) combinatorial explosion; (c) constraint problems; 

(d) sorting problem; (e) interaction 

3. AI problems tend to involve (a) computations with large 

numbers; (b) combinatorial explosion of running time; 

(c) easy choices once understood; 

(d) straightforward inference; (e) none of these 

4. Deciding whether a formula in propositional logic is 

satisfiable is considered (a) intractable; (b) undecidable; 

(c) tractable; (d) decidable; (e) polymorphic 

5. SAT is the problem of deciding whether a formula in 

propositional logic (a) holds; (b) has a set of variable 

assignments that make it true; (c) is not a contradiction; 

(d) is syntactically correct; (e) is probably true 

6. The set of formulas in propositional logic that can evaluate 

to true values under some set of variable assignments is 

(a) SAT; (b) finite; (c) undecidable; (d) decidable in 

O(n) time; (e) none of these 

7. P is the set of (a) algorithms that execute in O(n) time; 

(b) problems decidable in O(n
k
) time for some constant k; 

(c) problems not decidable in O(n
k
) time; 

(d) intractable problems; (e) exponential-time problems 

8. Problems for which no polynomial-time solutions are known 

are called (a) undecidable; (b) intractable; (c) NP; 

(d) optimization; (e) none of these 

9. NPC is the set of all (a) algorithms that execute in O(2
n
) 

time; (b) problems decidable in O(n
k
) time for some constant 

k; (c) problems for which possible solutions may be checked 

in O(n
k
) time; (d) intractable problems; (e) exponential-

time problems  

10. Problems to which SAT or similar problems are reducible are 

called (a) P; (b) NP; (c) NP-complete; (d) NP-hard; 

(e) undecidable 

11. NP-complete problems are widely believed to have 

(a)  polynomial-time solutions; (b) no polynomial-time 

solutions; (c) no exponential-time solutions; (d) no solutions 

checkable in polynomial time; (e) none of these 

12. The set of intractable problems is associated with (a) P; 

(b) divide-and-conquer algorithms; (c) greedy algorithms; 

(d) NP; (e) NPC and EXPTIME 

3. Discrete probability 

1. A set of possible outcomes is a(n) (a) random variable; 

(b) probaiblity distribution; (c) compound event; 

(d) sample space; (e) permutation 

2. An outcome that is from a set of uncertain possibilities 

characterizes a (a) random process; (b) sample space; 

(c) event; (d) sequence; (e) permutation 

3. A set of possible outcomes is a(n) (a) random variable; 

(b) probability distribution; (c) compound event; 

(d) sample space; (e) permutation 

4. An outcome that is from a set of uncertain possibilities 

characterizes a (a) random process; (b) sample space; 

(c) event; (d) sequence; (e) permutation 
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5. A uniform probability function P(x), for a probability space 

of size n, is (a) 0; (b) 1.0; (c) sqrt(n); (d) 1/n; (e) n 

6. A probability space is (a) an event; (b) a random process; 

(c) a set of possible outcomes; (d) a random variable; 

(e) a set of probabilities 

7. For sample space S, Kolmogorov’s axiom asserts that P(S) = 

(a) 0; (b) 0.5; (c) 1; (d) 2; (e) indeterminate 

8. For sample space S, Kolmogorov’s axiom asserts that P() = 

(a) 0; (b) 0.5; (c) 1; (d) 2; (e) indeterminate  

9. Kolmogorov’s axioms are considered useful for decision 

making because (a) they predict outcomes in many domains; 

(b) beliefs that violate the axioms result in poor bets; 

(c) they help the agent prove theorems; (d) they 

dictate inferences; (e) they reflect expertise 

10. Monotonicity asserts that for probability spaces A and B, 

(a) A  B  P(A)  P(B); (b) A  B  P(A) = P(B); 

(c) A = B  P(A) < P(B); (d) A  B  P(A)  P(B); 

(e) none of these 

11. P(~A) = (a) 0; (b) 1.0; (c) P(A); (d) 1 – P(A); (e) 1 / P(A) 

12. For disjoint events A and B (a) P(A  B)  0; 

(b) P(A)  P(B); (c) P(A  B) = P(A)  P(B); (d) P(A) + P(B); 

(e) P(A  B) = 1.0 

13. For independent events A and B, P(A  B) = (a) P(A) + P(B); 

(b) P(A)  P(B); (c) P(A) P(B); (d) P(A) / P(B); (e)  1.0  

14. For independent events A and B, P(A  B) = (a) P(A) + P(B) 

 P(~A) P(~B); (b) P(A)  P(B); (c) P(A) P(B); 

(d) P(A) / P(B); (e)  1.0  

15. The average of values for equally likely outcomes is a(n) 

(a) probability; (b) random variable; (c) expected value; 

(d) combination; (e) permutation 

16. Expected value of a die throw is (a) 0; (b) 1; (c) 3.5; (d) 4; 

(e) 6 

17. Expected value of a coin toss is (a) 0; (b) 0.25; (c) 0.5; (d) 1; 

(e) 2 

18. P(A | B) = (a) P(A  B) / P(B); (b) P(A  B); (c) P(A) P(B); 

(d) P(A) / P(B);  (e) P(A)  P(B) 

19. The average of values for equally likely outcomes is a(n) 

(a) probability; (b) random variable; (c) expected value; 

(d) combination; (e) permutation 

20. Conditional probability is expressed by (a) P(A) + P(B)  

P(~A) P(~B); (b) P(A)  P(B); (c) P(A) P(B); (d) P(A) / P(B); 

(e) P(A | B) 

21. Conditional probability is (a) degree of belief in the absence 

of other information; (b) unconditional probability; 

(c) degree of belief given other information; (d) probability 

of a past event; (e) a random distribution 

22. A degree of belief, in the absence of helpful information, is 

(a) prior probability; (b) conditional probability; 

(c) a random variable; (d) an axiom; (e) an event 

23. A degree of belief given some helpful information is a(n) 

(a) prior probability; (b) conditional probability; 

(c) random variable; (d) axiom; (e) event 

24. A random variable is a(n) (a) truth value; (b) set; 

(c) function; (d) relation; (e) number 

25. A discrete random variable maps from (a) a sample space 

to [0..1]; (b) a sample space to a sample space; (c) a sample 

space to a number of outcomes; (d) outcomes to [0..1]; 

(e) outcomes to a sample space  

26. A probability distribution maps from (a) a sample space 

to [0..1]; (b) a sample space to a sample space; (c) a sample 

space to a number of outcomes; (d) outcomes to [0..1]; 

(e) outcomes to a sample space  

27. A random distribution takes values as follows (a) P(x) = k; 

(b) P(x = k) = P({s  S | (s) = k}); (c) f : S  [0..1]; 

(d) P(A  B) = P(A) + P(B); (e) P(x)  [0..1] 

28. The normal curve depicts (a) the uniform distribution; 

(b) the Bayesian theorem; (c) the Gaussian distribution; 

(d) a random variable; (e) an outcome 

29. A flat graph of a function depicts (a) the uniform 

distribution; (b) the Bayesian theorem; (c) the Gaussian 

distribution; (d) a random variable; (e) an outcome 

30. Prior probability is (a) conditional probability; 

(b) unconditional probability; (c) degree of belief given other 

information; (d) probability of a past event; (e) a 

random distribution 

31. Conditional probability may apply if events are (a) causal; 

(b) noncausal; (c) independent; (d) dependent; (e) identical 

32. Conditional probability may apply if events are (a) causal; 

(b) noncausal; (c) independent; (d) dependent; (e) identical 

33. Prior probability is (a) belief; (b) certainty; (c) conditional 

probability; (d) unconditional probability; (e) none of these 

34. Probabilities of different event outcomes are a(n) (a) event; 

(b) probability distribution; (c) expected value; 

(d) sample space; (e) compound event 

35. Any probability value is (a) 0 or 1; (b) in the range of 0 to 1; 

(c) some positive real number; (d) some positive or negative 

real number; (e) an integer 

36. A sample space is (a) a random variable; (b) a sequence; 

(c) a number; (d) a set of all possible outcomes; (e) an event 

37. Prior probability is (a) belief; (b) certainty; 

(c) conditional probability; (d) unconditional probability; 

(e) none of these 

4. Bayes’ theorem 

1. Bayes’ Theorem states that for hypotheses h and evidence E, 

(a) P(hi) = P(E | hi) P(hi) / P(E); 

(b) P(hi | E) = P(E | hi) P(hi) / P(E);  

(c) P(E) = P(E | hi) P(hi) / P(E); (d) P(hi) = P(E | hi) / P(E); 

(e)  P(E) = P(E | hi) / P(E); 

2. Bayes’ Theorem enables computation of probabilities of 

causes, given probabilities of (a) effects; (b) other causes; 

(c) prior world knowledge; (d) inference rules; (e) none 

of these 

3. Evidence, in Bayes’ Theorem, is (a) effects; (b) other causes; 

(c) prior world knowledge; (d) inference rules; (e) none 

of  these 

4. Bayes’ Theorem is used in constructing (a) automata; 

(b) belief networks; (c) semantic networks; 

(d) knowledge bases; (e) none of these 

5. ___ enables finding probabilities of causes, given effects 

(a) Minimax; (b) Bayes’ Theorem; (c) Gödel’s Theorem; 

(d) fuzzy logic; (e) Prolog 
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5. Other applications  

1. Evolutionary computation uses the technique of maximizing 

(a) fitness; (b) reward; (c) performance; (d) quantity of 

output; (e) none of these  

2. Evolutionary computation (a) is deterministic; 

(b) seeks optimal solutions; (c) was developed in the 19th 

century; (d) is probabilistic; (e) none of these  

3. Evolutionary computation is modeled on (a) brute force; 

(b) divide and conquer; (c) greediness; (d) natural selection; 

(e) fractals 

4. Function optimization searches for (a) a function; 

(b) parameter values; (c) a return value; (d) an algorithm; 

(e) a time analysis 

5. Fitness measures are (a) parameters to functions; 

(b) functions to be optimized; (c) return values; 

(d) algorithms; (e) time functions 

6. Evolutionary computation is (a) a brute-force method; 

(b) state-space search one state at a time; 

(c) path optimization; (d) population based; 

(e) DNA computing 

7. Probabilities are employed in ____ methods (a) stochastic; 

(b) logical; (c) adversarial; (d) Java; (e) none of these 

8. Modal logic has operators that reflect (a) certainty; (b) truth; 

(c) belief; (d) cost; (e) time 

9. Degree of belief is expressed using (a) calculus; (b) logic; 

(c) probability theory; (d) temperature; (e) coin flipping 

10. Stochastic methods are used in ___ reasoning (a) inferential; 

(b) diagnostic; (c) algorithmic; (d) paradoxical; (e) diagonal 
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Terminology for topic 6 (Combinatorics and probability)  
atomic event 

Bayes’ Theorem  

binomial coefficient 

binomial distribution  

binomial theorem 

bounded rationality 

combination 

combinatorics  

complementary event 

complexity class 

complexity of a problem  

compound event 

conditional probability  

discrete probability  

event 

evolutionary 

computation 

expected value  

exponential time 

independent events  

intractable problem 

Kolmogorov’s axioms 

Markov decision process 

monotonicity  

multiset  

NP completeness 

partial additivity  

permutation 

pigeonhole principle 

possibility tree 

prior probability  

probability density 

function 

probability distribution 

probability of an event 

random process 

random variable  

randomized algorithm 

rational decisions  

sample space 

SAT  

satisfiability  

state space 

stochastic methods 

uniform distribution 

uniform probability 

space 

Questions to assess outcomes for topic 6 

6.1 Solve a problem in permutations and 
combinations (priority) 

1. What is the expected value of the roll of two dice, and why? 

Three dice? Four? 

2. What is the expected number of heads in two coin tosses? 

Three? Four? Five?  

Showing your work, give the (a) sample space and 

(b) probability that  

3. Exactly one coin toss, of four, is a tail 

4. At least two of four coin tosses are heads 

5. The children in a four-child family are all girls (assume 

equal probability of boys and girls). 

6. A seven-game world series will be swept in four games by 

one team or the other (assume evenly matched teams). 

6.2 Describe the relationship between 
combinatorics and intractable problems 

1. Define the two main complexity classes that distinguish 

tractable and intractable problems. Describe associated 

complexity classes.  

2. What sorts of running times is intractability associated with, 

and why? 

3. Describe the relationship among the following: 

combinatorial explosion; O(n
k
); (2

n
) 

4. Distinguish the problems of validity and satisfiability of 

propositional-logic formulas, referring to problem 

specification and complexity. 

5. Concerning the following formula in propositional logic  

(p  q  r)  (p  q   r)  (p  q  r): 

(a) State whether the formula is satisfiable, showing your 

work (you may write a truth table);  

(b) State and explain what is the time necessary to answer 

the question for arbitrary formulas with k variables. 

6. What are the complexities of these problems w.r.t. formulas 

 in propositional logic? Explain. 

a.  is a tautology 

b.  is satisfiable 

c.  is a contradiction 

d.  holds for a given set of variable assignments 

7. What is TIME(T(n))? 

8. What is the (very short) name of the set of problems that are 

decidable in time that is a polynomial function of the 

input size? 

6.3a Describe a basic concept of 
probability theory (priority) 

Define the following and give an example. 

1. sample space 

2. event 

3. conditional probability 

4. independent events 

5. expected value 

6. uniform distribution 

7. random variable 

8. atomic event 

6.3b Prove a theorem in probability theory  
(priority) 

Prove:  

1. Monotonicity: A   B  P(A)  P(B) 

2. P(A) = 1 – P(A) 

3. P(A  B) = P(A) + P(B) – P(A  B) 

4. P(A  A
c
) = 1 (from Kolmogorov’s axioms) 

5. P(A
c
) = 1 – P(A) (from Kolmogorov’s axioms) 

6. (Uniform probability function P : S  R)  

P(x) = (1/n) for any x in S 

7. If A, B are disjoint events, then P(A  B) = P(A) + P(B) 

6.4 Describe and apply Bayes’ Theorem 

1. Suppose P(A | B) = 0.8, P(A) = 0.2, and P(B | A) = 0.3. Give 

P(B), using Bayes’ Theorem
2
, showing your work. 

2. Describe how Bayes’ Theorem is used to find quantitative 

predictions about cause-effect situations. 

3. How does conditional probability enable diagnostic 

reasoning? Refer to Bayes’ Theorem. 

4. Express Bayes’ Theorem in mathematical notation, based on 

the word description footnoted below. 

                                                           
2
 Bayes’ Theorem states that the conditional probability of a 

hypothetical explanation for an observed event, given the event, 

is the product of unconditional probability of the hypothesis and 

the conditional probability of the event, given the hypothetical 

explanation, divided by the  unconditional probability of 

the event.  

 



David M. Keil CSCI 317: Discrete Structures  Framingham State University 2/14 

 

5. Name and describe the following, including the significance 

of possible labels on transitions.  

  

6.5 Describe a computational application of 
probability theory 

1. In your own words, relate fitness to function optimization. 

2. What sorts of problems does evolutionary computation 

address and how? 

3. Describe a population-based, randomized way to solve 

optimization problems by testing fitness. 

4. Describe the evolutionary algorithm. 

For #5-13, see the Markov model of weather below.  

 

Based on that data, given that it is sunny today, showing your 

work, calculate the probability that: 

5. The next three  days will not all be sunny 

6. The next three days will be cloudy 

7. The next three days will be sun, clouds, rain 

8. The next three days will be rainy 

9. The next two days will be rain, then sun 

10. Two of the next three days will be rainy  

11. The next four days will all be sunny or cloudy 

12. It will be cloudy two days from now 

13. It will not be sunny two days from now 
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Multiple-choice questions on Topic 7 (Information theory) 
1. Quantifying information 

1. The mathematical framework of information theory is 

similar to (a) probability theory; (b) graph theory; 

(c) analysis of algorithms; (d) theory of computation; 

(e) entropy in statistical mechanics 

2. The study of sources, channels, and outputs of 

communication systems is (a) information theory; 

(b) probability theory; (c) graph theory; (d) analysis of 

algorithms; (e) theory of computation 

3. An application of information theory is (a) algorithm design; 

(b) algorithm analysis; (c) data compression; (d) models of 

computation; (e) function optimization 

4. A concern of information theory is (a) excessive speed at 

source; (b) inefficiency at destination; (c) noise in channel; 

(d) broken connections; (e) algorithm design 

5. Quantity of information in a message rises with 

(a) data speed; (b) accuracy of knowledge at source; 

(c) prior uncertainty about message; (d) prior certainty about 

message; (e) processor speed 

6. Freedom of sender’s choice of message determines 

(a) quantity of information content; (b) data speed; 

(c) accuracy of knowledge at source; (d) receiver’s freedom; 

(e) processor speed 

7. Entropy is (a) running time; (b) quantity of information; 

(c) certainty; (d) speed; (e) accuracy 

8. Quantity of information is (a) entropy; (b) accuracy; 

(c) certainty; (d) speed; (e) order 

9. A concern in data compression algorithm design is 

(a) increase of redundancy; (b) increase of information 

content; (c) decreased redundancy; (d) decreased information 

content; (e) line speed 

10. Statistical properties of ergodic processes 

(a) vary throughout the processes; (b) are uniform 

throughout the processes; (c) are unrelated to entropy; 

(d) are indeterminate; (e) are simple 

11. Entropy of a source depends on (a) speed of source; 

(b) probabilities of occurrence of symbols from the source; 

(c) probability of a given message; (d) probabilities of 

all messages; (e) none of these 

12. The information in a random event E is ____ P(E) 

(a) directly related to; (b) inversely related to; 

(c) directly related to the logarithm of; (d) inversely related 

to the logarithm of; (e) none of these 

13. The information in a coin flip is ____ bits (a) 0; (b) 1; 

(c) 0.5; (d) 2; (e) 4 

14. The information in two coin flips is ____ bits (a) 0; (b) 1; 

(c) 0.5; (d) 2; (e) 4 

2. Algorithmic definitions of randomness 

1. A string that is hard to compress is highly (a) simple; 

(b) random; (c) valued; (d) shrinkable; (e) improbable 

2. The Kolmogorov complexity function quantifies 

(a) simplicity; (b) non-randomness; (c) compressibility; 

(d) algorithm running time; (e) incompressibility 

3. If complexity C(x)  |x|  c, then x is (a) random; 

(b) c-compressible; (c) c-incompressible; 

(d) of high complexity; (e) of high running time 

4. KM (x) = min{d | (p) (|p| = d)  M(p) = x } is 

(a) a probability function; (b) a random variable; 

(c) a measure of complexity; (d) a measure of simplicity; 

(e) a measure of running time 

5. The Invariance Theorem states that (a) complexity of strings 

is proportional to length; (b) complexity of strings is 

uniform; (c) complexity of strings is independent of 

language or model of computation; (d) all strings have the 

same amount of randomness; (e) none of these 

6. Kolmogorov complexity if x (a) running time of a program x; 

(b) running time of a program that outputs string x; 

(c) length of the shortest program that outputs x; 

(d) the regularity of x; (e) the nonrandomness of x 

7. The complexity of a string, C(x), is (a) its length; 

(b) the number of different symbols in it; 

(c) its compressibility; (d) the length of the shortest 

algorithm that generates it; (e) the running time of the 

fastest-running algorithm that generates it 

8. The length of the shortest program that outputs a string it the 

string’s (a) compression ratio; (b) complexity; 

(c) algorithmic size; (d) time; (e) stature 

3. Chaos and complex systems  

1. The occurrence of seemingly random events in deterministic 

systems is (a) complexity; (b) probability; (c) combinatorics; 

(d) chaos; (e) fractal dimension 

2. Chaos characterizes ____ systems (a) deterministic events in  

regular; (b) seemingly random events in deterministic; 

(c) random events in non-deterministic; (d) predictable 

events in simple; (e) predictable events in complicated 

3. Aperiodic events characterize (a) clockwork; 

(b) randomness; (c) non-determinism; (d) chaos; 

(e) predictability 

4. Chaos results from (a) internal processes; 

(b) linear feedback; (c) predictability; 

(d) nonlinear feedback; (e) algorithm execution 

5. Nonlinear feedback results in ____ behavior 

(a) deterministic; (b) periodic; (c) predictable; 

(d) unpredictable; (e) time-consuming 

6. Chaotic system behavior is heavily dependent on 

(a) processing speed; (b) human intervention; 

(c) initial conditions; (d) linear feedback; (e) none of these 

7. Chaos is present when aperiodic behavior occurs in ____ 

systems (a) well-designed; (b) mathematically ornate; 

(c) mathematically simple; (d) very complicated; 

(e) none of these 

8. Fractal geometry measures the ____ of objects (a) size; 

(b) regularity; (c) linearity; (d) irregularity; (e) form 

9. Objects that are irregular all over and at the same degree at 

different scales are (a) linear; (b) simple; (c) fractals; 

(d) triangles; (e) circular 

10. An attractor is a(n) (a) fractal; (b) complex system; 

(c) feedback generator; (d) initial state; (e) state to which a 

system settles 

11. A state to which a chaotic system settles is called a 

(a) feedback loop; (b) complex result; (c) linear attractor; 

(d) strange attractor; (e) fractal 
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12. Self-organizing systems are (a) simple; (b) feedback-free; 

(c) open to their environments; (d) closed to their 

environments; (e) dependent on human control 

13. Systems that are open, can maintain structure in non-

equilibrium conditions, and complex in their feedback loops, 

are (a) strange; (b) self-organized; (c) fractals; 

(d) self-similar; (e) non-chaotic 
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Terminology for topic 7 (Information theory) 
attractor 

chaos  

complex system  

complexity 

compressible  

data compression 

decentralization 

descriptional complexity 

emergent behavior 

entropy  

feedback 

fractal geometry 

incompressibility 

information theory 

invariance theorem 

Kolmogorov complexity 

linear feedback  

nonlinear feedback 

quantity of information 

randomness  

self-organization  

strange attractor 

Problems to assess outcomes for topic 7 

7.1 Describe a way to quantify information 
(priority) 

1. Describe a unit of measure used, in information theory, to 

quantify the information in a message. 

2. What happens to the quantity of information in an image after 

JPEG compression of the image? 

3. What is information theory? 

4. How much information is contained in a string of a million 

bits, each of them 0? 

5. What is entropy? 

6. What principles guide data compression? 

7. How is the amount of information in the outcome of an event 

related to the outcome’s probability? 

8. How much information is contained in a string of bits 

generated by a million coin flips? 

9. What is Huffman code? How does the quantity of 

information in a string change after the string has been 

compressed using the Huffman scheme? 

7.2 Define descriptional complexity and relate it 
to randomness 

1. Relate compressibility to randomness. 

2. Relate complexity to randomness. 

3. What can be said about a string x, if complexity 

K(x)  |x|   c, for some constant c? 

4. What is a c-incompressible string? 

5. What is a way to quantify the randomness of an object? 

6. What is Kolmogorov complexity? 

7. Can the complexity of a string be defined only with respect to 

a particular machine or programming system, or may it be 

defined independently? Justify your answer. 

8. If you flipped a coin 1000 times, how long do you think the 

shortest algorithm that generates the string would be?  

9. If you used the Java random number generator to display a 

string x, a billion bits long, by simulating coin flips, what 

would you estimate the complexity of x to be? 

10. Write a short algorithm to generate the string 0
1000

. 

How much larger an algorithm would be required to generate 

the string 0
1,000,000

? 

7.3 Relate chaos, complex systems, and 
self-organization 

1. What is chaos? 

2. Relate aperiodic behavior to deterministic systems. 

3. What is linear feedback and how does it relate to chaos? 

4. What is an attractor? 

5. What is a fractal? 

6. How do initial conditions influence the behavior of 

chaotic systems? 

7. Give some features of self-organizing systems. 

Projects 
1. Find an online demo of chaotic or self-organizing systems. 

2. Comment on M. Resnick’s article about decentralized 

systems and decentralized thinking. 

3. Download Netlogo and write up your experiences with it. 
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Study questions on multiple topics
1. Describe results obtained in this course by induction and 

results obtained by contradiction. 

2. How did your ideas about the relationship between 

mathematics and computing change during this semester? 

3. What recurrent threads appeared multiple times in 

this course? 

4. What are trees and recurrences good for in 

computing applications? 

5. What is a discrete structure? Give some examples. 

6. Concerning discrete structures, how do you know what 

you know? 

7. Give a practical application of a concept discussed in 

this course. 

8. What is computing about? 

9. Defend or refute: Discrete mathematical structures have 

a slight relationship with the problems encountered by 

IT professionals. 

10. Referring to chapter __ of Epp, 

(a) What are the main concepts presented? 

(b) What are the main concepts presented in the topic(s) of 

this course for which the chapter was assigned? 

(c) Compare and contrast the textbook presentation with what 

was presented in the classroom and the slides. 

11. Relate the seven topics discussed in this course. Focus on the 

way that some material occurred again and again in later 

topics. Contrast different approaches taken, problems 

addressed, and objects analyzed. Include discussion of ways 

to mathematically formalize some of the different notions 

addressed in the course. While covering all the main topics, 

you may emphasize ones that interested you the most. 

12. How have your perspectives on the course material changed 

as a result of  

(a) group work,  

(b) comments on your work from other students,   

(c) comments from the instructor? 

13. What ideas or passages in the textbook most engaged you or 

most changed the way you thought? 

14. Describe some relationships among logic, sets, and functions 

as discussed in this course. 

15. Discuss some knowledge that we have obtained in this course 

with mathematical certainty. 

16. Explain what a language is and some mathematical notations 

for languages 

17. Explain some operations on languages. 

18. Describe some finite and infinite mathematical objects 

Distinguish among  the main classes of infinite objects 

we discussed. 

19. Discuss some mathematical structures that we have discussed 

that enable very fast solutions to certain problems 

20. Discuss some tools that we have considered that enable us to 

see that certain problems are extremely time consuming 

to solve. 

21. Describe at least three proof methods that we have used, 

together with examples of propositions proven by their use. 

22. Discuss some mathematical ways that we have discussed of 

managing the uncertainty of the real world. 

23. Discuss some proven limitations on our ability to solve 

certain problems at all. 
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Supplementary questions 

T2: Sets 
Fill blanks in proof: Epp, pp. 364-365, #2-5 

Element argument: p. 365, #8, 10, 12-15, 17-20 

Empty-set proof: p. 366, #25-35 

Counter-example: p. 372, #1-4 

 

Reflexive, symmetric, transitive relations: p. 458, #1-17 

Equivalence relations: pp. 475-476, #1-19 

 


