

CSCI 317: Discrete Structures for Computer Science

Prof. David M. Keil, Framingham State University, Spring 2014

Syllabus

Invitation

What mathematical concepts do you, as a computer-

science major or a computing professional, need to

know how to apply?

This course provides an environment for you to

explore the connection between mathematical

abstractions and practical computing.

Are you curious about: How we know what we

know? How to tell when problems can’t be solved?

What solvable problems are not worth solving? What is

most likely to happen in the future? What is orderly

about chaos? What ideas are the foundations for all of

computer engineering, software engineering, web

design, mobile apps, and robotics? If these questions

seem worth asking, join our inquiry.

Course description (FSU catalog)

An intermediate to advanced course on discrete

mathematical structures used in computer science.

Students study abstract structures used to represent

discrete objects and the relationships between these

objects. Course topics include principles of logic,

incompleteness, diagonal proof, and inductive proof of

correctness of simple algorithms. Students will write

recurrences to define computable functions and will

explore discrete probability and randomness from a

computational viewpoint.

Prerequisites: CSCI 271 Data Structures and either

MATH 215 Finite Mathematics or MATH 292

Discrete Mathematics.

Meeting times
Tuesdays, 6:30-9:50pm, in Hemenway Hall 225.

To contact me:
Office hours (Hemenway Hall 318A):

Mon. 10:30-11:30 a.m.; Tue. 5:30-6:30 p.m.;

Wed. 3:30-4:30 p.m.

Telephone: (508) 626-4724

Email: dkeil@framingham.edu

URL: www.framingham.edu/~ dkeil

I like talking with students about what we’re

studying. Even if everything is clear enough, please

check in with me at least twice in the semester.

Basic reading

 Susanna Epp, Discrete Mathematics with

Applications (Brooks/Cole, 2011).

 Slides and handouts (see also course web site)

 Text material on Discrete Structures available at

www.saylor.org/courses/cs202

Text material is essential for explanations. The Epp

book has lots of explanations and examples. We will

rely on it and its exercises under nearly every topic.

Our inquiry

Each of the seven topics of this course will invite you

to find answers to questions that matter. The first

question is: What matters?

Topic 1 explores reasoning and proofs. How can we

be sure that we know what we know? What is

reasoning? Can software be verified reliably,

independent of testing?

Topic 2 looks at sets and relations. What are

languages? How can we measure the running time of

any algorithm, without knowing what hardware it

runs on? What is a technique for defining any

computable function?

In Topic 3, we consider graphs, transition systems

and models of computation. We will ask: How do

packets find their destination on the Internet? What are

the simplest imaginary computing machines like?

Trees (Topic 4) are mathematical structures designed

for speed. What enables the fastest computations to be

fast? Why are trees found almost everywhere in

applications like artificial intelligence and

bioinformatics?

In Topic 5, we enter a strange world of

impossibilities. Aren’t all infinite sets the same size?

Are some problems not solvable? Is there any claim that

is certainly true, but can’t be proven?

Topic 6 is about possibilities and probabilities. How

many arrangements of symbols or numbers are pos-

sible? Can we precisely predict or explain events?

In Topic 7, we bring together some advanced ideas

that seem to matter. Will you agree that they matter?

What near-certain results emerge from chaotic random

processes? What’s the best explanation for what we

observe? What is information and how is it measurable?

These questions and others will frame our

investigation of discrete structures.

mailto:dkeil@framingham.edu

David Keil CSCI 317 Discrete Structures for Computer Science Framingham State University Spring 2014

How the course will deliver what it offers

My goal is to create a natural critical learning

environment. In Discrete Structures, this means defining

concepts and proving mathematical facts about

computing. We all learn at our own pace, and we are all

together in this class learning.

For each of the seven topics, I’ll speak about the topic

for a few minutes, with slides and with examples to

compile, run, and discuss; we’ll make space for group

work; and we’ll have in-class and out-of-class written

exercises. Practice exercises and quiz questions help me

track what students learn.

For each topic, we’ll have two to four two-hour

sessions. I’ll ask you to solve some topic practice

problems and to let me see your solutions by the end of

the session before the last one on the topic. I’ll look at

them and provide comments.

In the last session on the topic, we’ll have a review,

with problem solving by students; a multiple-choice

quiz; and a set of problems in quiz form.

For every topic, there’ll be two or three more chances

to solve problems in make-up quizzes. What I track is a

student’s best work on problems that assess

course objectives.

See the essay, “What we do in my classroom.”

Semester project

Each student will summarize the learning in this

course in a project that will include proofs from

exercises, will discuss applicability of some

mathematical results in computer science, and will

include research outside the course materials.

Learning outcomes

The course objectives are summarized and measured

by several learning outcomes per topic; see next page.

Some outcomes, mostly from Finite Math or Discrete

Math, are essential for success. All students who pass

the course will have shown success with these skills and

capabilities.

I will work to help students reach the outcomes listed

on the back page. Outcomes are a kind of very specific

learning objective. Some of our outcomes are especially

central; these I call “priority outcomes” and they are

indicated by asterisks.

If you’re tracking my opinions, it may help you to use

that sheet as a score card, writing on it the numbers

(from 1 to 4) that I write beside your quiz answers.

Update these numbers as you answer questions on

make-up versions of the quizzes; your highest score on

an outcome is the one that matters.

Grading

In evaluating the work of individual students,

evidence of two kinds of accomplishment matter to me:

learning of course objectives, and contribution to the

learning of others. The graphs below show their relative

importance to me and the relative importance of their

components or methods of assessment.

 Overall Learning Contribution

Rubric for assessment of course subtopic
learning outcomes

I evaluate answers to quiz questions, as well as

project work and some exercises, using the rubric

below. 4 means, roughly, “excellent”; 3 means “good”;

2 means “OK”; 1 means “weak success.” An answer

without one of these scores is considered not yet

successful; try again.

Code Meaning %

4 Solves problem thoroughly and

accurately. Applies relevant concepts

adeptly and insightfully. Fully supports

claim of mastery of outcome.

100

3 A mostly successful solution with some

omissions or errors. Generally accurate

application of concepts. Gives strong

support for claim of success with

outcome.

87

2 Solution shows some grasp and

application of relevant concepts,

reflecting significant partial

achievement of outcome.

73

1 A solution that shows some idea about

relevant concepts, meeting minimum

standards for outcome.

61

Learning objectives and expectations

The course is guided by the following objectives:

0a. Contribute to class activities throughout

the semester

0b. Solve problems as part of a team

0c. Present results in the classroom

0d. Present written results

0e. Show knowledge of facts and concepts

0f. Summarize the semester’s learning

0g. Relate mathematical concepts to applications

Topic objectives:

David Keil CSCI 317 Discrete Structures for Computer Science Framingham State University Spring 2014

1. Explain and apply logical inference

2. Apply set-theoretic concepts, including the notions

of relations, functions, and languages

3. Apply the basic notions of graph theory, including

by means of proof

4. Prove properties of trees, describing

their applications

5. Distinguish countable from uncountable sets,

applying the diagonal proof method in number

theory, logic, and computability

6. Apply the basic notions of combinatorics and

discrete probability, including by proof

7. Explain connections between quantity of

information and degree of randomness, comparing

chaotic behavior to random behavior

For detailed outcomes, see page 5.

Math foundations of computer science

Computer science is a scientific discipline with

empirical and theoretical aspects. This discipline is

concerned with computation, the manipulation of

symbols by machines. Computer programming and

architecture are on the practical side. The theoretical

aspect is a branch of mathematics. Its foundation is in

discrete mathematics, the mathematics of logic, sets,

and discrete quantities. This is a discrete math course.

Theoretical results in computer science are theorems

about computations and about data structures relevant to

computation. Theorems are mathematically proven

assertions. For example, you will see that we can prove

that an algorithm works.

The origin of computer science is in logic, because

computers are machines that manipulate symbols using

logic. Every component of a computer operates on truth

values (bits).

This course builds on and applies concepts studied in

discrete mathematics or finite mathematics courses.

When you complete it, you will know some things for

sure, because you will have proven them.

Discrete Structures helps prepare for work in

verification and analysis of performance of algorithms

and interactive processes, as well as in formal languages

and models of computation, presented in presented in

CSCI 347 (Analysis of Algorithms), CSCI 460 (Theory

of Computing), and graduate courses. It provides a

foundation for study in artificial intelligence,

bioinformatics, and other applied areas.

Topics and examples in this course are chosen for

their relevance to application in practical and theoretical

computer science. For example, we focus on algorithms;

on structures on which algorithms operate, such as

graphs; and on the application of transition systems as

models of computation.

Where the course material overlaps with CSCI 347

and CSCI 460, the emphasis in CSCI 317 is on the

mathematics, especially theorems and proofs; whereas

the emphasis in Algorithms is on design and time

performance, and in Theory it is on the computing

power of imaginary machines. In this course, the

theorem and proofs are our focus, and in the other

courses the focus is application.

The course is organized partly in a spiral model. That

is, certain themes will be addressed repeatedly in the

course, each time in a different context and at a more

advanced level.

I organized the topics with the following reasoning.

Logic (topic 1) is the foundation for all topics of this

course, including proof methods. Sets and relations

(topic 2) are the underpinning for recurrences and

algorithm analysis (topic 2); for graphs and transition

systems (topic 3); for trees (topic 4), a kind of graph;

and for recursively defined functions (topic 5).

Tree concepts (topic 4) are used extensively in

combinatorics and probability (topic 6). Probabilistic,

uncertain processes (topic 6) are the objects of study in

information theory, randomness, and chaos (topic 7).

Accommodations

“Students with disabilities who request

accommodations are to provide Documentation

Confirmation from the Office of Academic Support

within the first two weeks of class. Academic Support is

located in the Center for Academic Support and

Advising (CASA). Please call (508) 626-4906 if you

have questions or if you need to schedule an

appointment.” (See www.framingham.edu/CASA/

Accommodations/accomm.htm.)

David Keil CSCI 317 Discrete Structures for Computer Science Framingham State University Spring 2014

Course Plan

Dates Topic or activity Readings

1/21 Introduction to course and review of data structures

and discrete-math / finite math

Handout; Epp, Ch. 1-4; Sec. 6.4

1/28 – 2/4 1. Boolean algebras, logic, and induction Epp, Sec. 6.1-6.4; handouts

2/11 – 2/19 2. Sets, relations, and recurrences Epp, Ch. 5; Sec. 6.1; Sec. 8.1-8.5;

11.1-11.3; 12.1; handouts

2/25 – 3/4 3. Graphs and transition systems Epp, Sec. 10.1-10.4;

Sec. 12.2-12.3

3/4 – 3/11 4. Tree structures and their uses Epp, Sec. 10.5-10.7;

Sec. 11.4-11.5; handouts

3/11 Review and make-up quizzes on topics 1-3

3/25 – 4/1 5. Countability and decidability Epp, Sec. 6.4; Ch. 7; handouts

4/1 – 4/3 6. Combinatorics and discrete probability Epp, Ch. 9; handouts

4/15 7. Information theory, randomness, and chaos Handouts

4/22 – 4/29 Summary and course review

Make-up quizzes

Tues., 5/6 Final exam (student presentation)

Optional objectives problems

Ver. 1/28/14

David Keil CSCI 317 Discrete Structures for Computer Science Framingham State University Spring 2014

CSCI 317 Discrete Structures subtopic outcomes

1. Boolean algebras, logic, and induction

____ 1.1a Describe the syntax of propositional logic**

____ 1.1b Apply the semantics of propositional logic**

____ 1.1c Apply logical inference**

____ 1.1d Explain Boolean algebras**

____ 1.2a Use a quantifier**

____ 1.2b Distinguish predicate from

propositional logic**

____ 1.3a Write a direct proof**

____ 1.3b Write a proof by construction**

____ 1.3c Write a proof by contradiction**

____ 1.3d Describe the principle of

mathematical induction**

____ 1.3e Use induction to prove a theorem

about numbers**

____ 1.4a Explain concepts of algorithm correctness *

____ 1.4b Use induction to prove an algorithm correct*

2. Sets, relations, recurrences

____ 2.1a Explain or apply a concept in set theory**

____ 2.1b Prove a theorem in set theory**

____ 2.2a Describe a relation**

____ 2.2b Apply the notion of an equivalence relation*

____ 2.3a Describe a function**

____ 2.3b Define a class of functions

____ 2.4a Use a function to define a sequence**

____ 2.4b Define a language**

____ 2.5a Describe a recursively defined function**

____ 2.5b Write a recurrence to define a function

____ 2.6a Define O, , and notation

____ 2.6b Prove the correctness of a solution to

a recurrence

3. Graphs and transition systems

____ 3.1a Construct a graph from a description**

____ 3.1b Describe a basic concept of graph theory**

____ 3.2 Apply the concept of graph isomorphism

____ 3.3 Describe a transition system*

____ 3.4 Use structural induction to prove an assertion

about an expression or graph*

4. Trees

____ 4.1a Draw a tree with given specifications*

____ 4.1b Describe and prove a property of trees*

____ 4.2a Explain the running time of a

tree-enabled algorithm

____ 4.2b Apply the Master Theorem to solve

a recurrence

____ 4.3 Describe an AI or bioinformatics application

of trees

5. Countability and decidability

____ 5.1a Prove that a set is countable*

____ 5.1b Prove that a set is uncountable*

____ 5.2 Describe the Incompleteness Theorem

____ 5.3 Explain how recursion

captures computability*

____ 5.4 Prove that a problem is undecidable

____ 5.5 Define a non-well-founded set coinductively

6. Combinatorics and probability

____ 6.1 Solve a problem in permutations

and combinations*

____ 6.2 Describe the relationship between

combinatorics and intractable problems

____ 6.3a Describe a basic concept of

probability theory*

____ 6.3b Prove a theorem in probability theory*

____ 6.4 Describe and apply Bayes’ Theorem

____ 6.5 Describe a computational application of

probability theory

7. Information theory, randomness, chaos

____ 7.1 Describe a way to quantify information*

____ 7.2 Define descriptional complexity and relate it

to randomness

____ 7.3 Relate chaos, complex systems, and

self-organization

* Priority objective

** Essential objective

Rev. 2/2/14

