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The function-optimization problem
• Let f : Nk → R for some k (the arity of f)
• Problem: Find some x ∈ Nk s.t. f (x) 

is maximal
• Example: Suppose x is the set of proportions 

of ingredients in a fuel mixture, f (x) is fuel 
efficiency under this mixture

• Optimizing  f (x) means finding the most 
efficient mixture

• For an algorithm to optimize a function we 
must have f : X → Y with X, Y finite
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• Example: Suppose f is viewed as a fitness
function and x is the set of attributes of 
individuals of a population

• Then finding x s.t. f (x) is maximal is finding 
the fittest possible individual of the species, 
i.e., those with the best attributes to assure 
survival

• Evolution by natural selection tends to 
optimize fitness, over many generations

Fitness and function optimization
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Example: Checkers (Samuel, 1950s)
• Let fitness function f : Nk → R be an evaluator of

checkers board positions from a black or red point 
of view

• Let x ∈ Nk be a k-tuple of weights for each of k
different criteria for evaluating a checkers position

• Example: let x1 be relative importance of number of 
kings, x1 be relative importance of number of 
opponent checkers threatened, etc.

• Then writing a good checkers-playing program 
reduces to finding a good set of relative weights 
x1, …, xk for these criteria 
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The evolutionary algorithm
t ← 0, Initialize (P0), y ← Evaluate (P0)
While not terminate (y, t) do

t ← t + 1
Pt← Select(Pt –1, y)
Pt← Alter(Pt)
y ← Evaluate (Pt)

• t is time; Pt is a population at time t
• Evaluate is a fitness function to be optimized, 

applied to individuals in the population
• Select is a method of choosing some members of P

to survive to the next generation
• Alter is a method of changing P in a random way, 

e.g., by genetic mutation or crossover
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No Free Lunch
• Theorem: For any function-optimization 

algorithm, for any environment (fitness function) 
in which the algorithm performs well…

• …there is some environment in which it 
performs equally poorly

• Precisely, no function-optimization algorithm 
performs better in the general case than random 
choice

• Result: Function optimization usually requires 
knowledge of the domain, i.e., heuristics; can 
only achieve approximation to optimality
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Dynamic environments
• The function-optimization problem 

defined above is static, assumes f will 
be the same later as now

• Optimization in the real world, e.g., 
fitness in natural environments, such as 
climate, is often dynamic

• A separate, but related, category of 
environment is stochastic (imperfectly 
predictable)
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Interactive computation
• Definition: An interactive computation is an

ongoing exchange of data among computing 
agents, such that the output of each may causally 
influence its later inputs

• Definition: A computing agent with persistent state
(CAPS) is an agent that accepts inputs, emits 
outputs, and has a state or memory whose value 
may evolve from one I/O step to the next

• Discussion: It can be shown that computing agents 
with persistent state are capable of a wider range of 
behaviors than ones without persistent state
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Dynamic persistent environments
• Definition: A dynamic persistent environment (DPE) is a 

CAPS, E, that may interact with some other CAPS, M, 
with E changing state due to M’s actions in a way 
perceptible to M. We call E a dynamic persistent 
environment with respect to M.

• Discussion: If some inputs received from E by M have 
reward value, then E generates a fitness function w.r.t. M
at each interaction step.

• This function maps M’s output to the value of M’s 
immediate reward

• Note that this function varies with the state of E, i.e., 
evolves over time
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Evolution in DPEs

• The evolutionary algorithm (Slide 5) must model 
the environment explicitly if the environment is 
dynamic and persistent

• Note that the fitness function Evaluate is relative 
to the evolving state of the environment here

t ← 0, Initialize (P0, E0), y ← Evaluate (P0 , E0)
While not terminate (y, t) do

t ← t + 1
Et← Alter-environment(Et –1, Pt –1)
Pt← Select(Pt –1, y)
Pt← Alter-population(Pt)
y ← Evaluate (Pt , Et)
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Resolving the No Free 
Lunch paradox

• Whereas no general-purpose function 
optimizing algorithm exists, the process of 
evolution has provably yielded adaptive and 
even intelligent life

• The key to resolving the paradox is that 
natural evolution does not optimize (static) 
functions, but operates in dynamic persistent 
environments 
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Overcoming limitations of 
algorithmic problem solving

• Internal and indirect interaction can 
support general-purpose adaptive 
behavior capable of attaining fitness in 
arbitrary dynamic persistent 
environments

• Evolutionary techniques appear to be the 
main way forward, provided the 
evolution occurs online, as the evolved 
objects interact with their environment
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Some interaction patterns 
in natural dynamic settings

1. Termites gathering chips
Protocol: Move at random, pick up chip 
when encountered, put down when another 
found

2. Ants foraging for food
Ants leave chemical trail, prefer existing 
trails, blaze shorter and shorter trails to and 
from food

3. Slime mold dividing and aggregating
These amoeba may aggregate by emitting 
chemical, migrating toward its greatest 
concentration
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Self-organization and 
emergent behavior

• Definition: Self-organization is the interaction 
of a set of processes or structures at a lower 
level of a system to yield global structures or 
behavior at a higher level

• Example: Chemical reactions
• Contrast to: Centralized, algorithmic behavior
• System behavior that is not the sum of 

component behaviors is called emergent
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Stigmergy
• Definition: A variety of self-organization 

in which mobile agents interact via their 
shared environment

• Contrast to: direct interaction; 
centralized interaction

• Examples: 
– termites gathering chips, 
– ants foraging, 
– slime mold aggregation
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Indirect interaction

• Agents A and B (right) 
may interact with each 
other indirectly via shared variable x

• Features: 
– anonymity (recipient ID not used in access)
– time delay (state changes persist)
– space decoupling (agents A, B need not meet)

Interaction via persistent, observable state 
changes, in which the destination of output is 
any agent that observes these state changes
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Indirect interaction and
multiagent systems

• In a MAS characterized by locality of interaction 
and mobility of agents, it is only possible for 
agents to influence overall system behavior 
remotely, i.e., indirectly

• Richness of multiagent interaction:
– due partly to ability of each agent to interact 

with multiple others
– hence indirectly with all others (otherwise 

system partitions)
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