
Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 1

Evolutionary
computation in dynamic
persistent environments

David Keil
October 4, 2004

Framingham State College
Computer Science Club talk series

Joint work with Dina Goldin,
University of Connecticut

David Keil Evolutionary computation in dynamic persistent environments 10/04 2

The function-optimization problem
• Let f : Nk → R for some k (the arity of f)
• Problem: Find some x ∈ Nk s.t. f (x)

is maximal
• Example: Suppose x is the set of proportions

of ingredients in a fuel mixture, f (x) is fuel
efficiency under this mixture

• Optimizing f (x) means finding the most
efficient mixture

• For an algorithm to optimize a function we
must have f : X → Y with X, Y finite

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 3

• Example: Suppose f is viewed as a fitness
function and x is the set of attributes of
individuals of a population

• Then finding x s.t. f (x) is maximal is finding
the fittest possible individual of the species,
i.e., those with the best attributes to assure
survival

• Evolution by natural selection tends to
optimize fitness, over many generations

Fitness and function optimization

David Keil Evolutionary computation in dynamic persistent environments 10/04 4

Example: Checkers (Samuel, 1950s)
• Let fitness function f : Nk → R be an evaluator of

checkers board positions from a black or red point
of view

• Let x ∈ Nk be a k-tuple of weights for each of k
different criteria for evaluating a checkers position

• Example: let x1 be relative importance of number of
kings, x1 be relative importance of number of
opponent checkers threatened, etc.

• Then writing a good checkers-playing program
reduces to finding a good set of relative weights
x1, …, xk for these criteria

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 5

The evolutionary algorithm
t ← 0, Initialize (P0), y ← Evaluate (P0)
While not terminate (y, t) do

t ← t + 1
Pt← Select(Pt –1, y)
Pt← Alter(Pt)
y ← Evaluate (Pt)

• t is time; Pt is a population at time t
• Evaluate is a fitness function to be optimized,

applied to individuals in the population
• Select is a method of choosing some members of P

to survive to the next generation
• Alter is a method of changing P in a random way,

e.g., by genetic mutation or crossover

David Keil Evolutionary computation in dynamic persistent environments 10/04 6

No Free Lunch
• Theorem: For any function-optimization

algorithm, for any environment (fitness function)
in which the algorithm performs well…

• …there is some environment in which it
performs equally poorly

• Precisely, no function-optimization algorithm
performs better in the general case than random
choice

• Result: Function optimization usually requires
knowledge of the domain, i.e., heuristics; can
only achieve approximation to optimality

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 7

Dynamic environments
• The function-optimization problem

defined above is static, assumes f will
be the same later as now

• Optimization in the real world, e.g.,
fitness in natural environments, such as
climate, is often dynamic

• A separate, but related, category of
environment is stochastic (imperfectly
predictable)

David Keil Evolutionary computation in dynamic persistent environments 10/04 8

Interactive computation
• Definition: An interactive computation is an

ongoing exchange of data among computing
agents, such that the output of each may causally
influence its later inputs

• Definition: A computing agent with persistent state
(CAPS) is an agent that accepts inputs, emits
outputs, and has a state or memory whose value
may evolve from one I/O step to the next

• Discussion: It can be shown that computing agents
with persistent state are capable of a wider range of
behaviors than ones without persistent state

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 9

Dynamic persistent environments
• Definition: A dynamic persistent environment (DPE) is a

CAPS, E, that may interact with some other CAPS, M,
with E changing state due to M’s actions in a way
perceptible to M. We call E a dynamic persistent
environment with respect to M.

• Discussion: If some inputs received from E by M have
reward value, then E generates a fitness function w.r.t. M
at each interaction step.

• This function maps M’s output to the value of M’s
immediate reward

• Note that this function varies with the state of E, i.e.,
evolves over time

David Keil Evolutionary computation in dynamic persistent environments 10/04 10

Evolution in DPEs

• The evolutionary algorithm (Slide 5) must model
the environment explicitly if the environment is
dynamic and persistent

• Note that the fitness function Evaluate is relative
to the evolving state of the environment here

t ← 0, Initialize (P0, E0), y ← Evaluate (P0 , E0)
While not terminate (y, t) do

t ← t + 1
Et← Alter-environment(Et –1, Pt –1)
Pt← Select(Pt –1, y)
Pt← Alter-population(Pt)
y ← Evaluate (Pt , Et)

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 11

Resolving the No Free
Lunch paradox

• Whereas no general-purpose function
optimizing algorithm exists, the process of
evolution has provably yielded adaptive and
even intelligent life

• The key to resolving the paradox is that
natural evolution does not optimize (static)
functions, but operates in dynamic persistent
environments

David Keil Evolutionary computation in dynamic persistent environments 10/04 12

Overcoming limitations of
algorithmic problem solving

• Internal and indirect interaction can
support general-purpose adaptive
behavior capable of attaining fitness in
arbitrary dynamic persistent
environments

• Evolutionary techniques appear to be the
main way forward, provided the
evolution occurs online, as the evolved
objects interact with their environment

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 13

Some interaction patterns
in natural dynamic settings

1. Termites gathering chips
Protocol: Move at random, pick up chip
when encountered, put down when another
found

2. Ants foraging for food
Ants leave chemical trail, prefer existing
trails, blaze shorter and shorter trails to and
from food

3. Slime mold dividing and aggregating
These amoeba may aggregate by emitting
chemical, migrating toward its greatest
concentration

David Keil Evolutionary computation in dynamic persistent environments 10/04 14

Self-organization and
emergent behavior

• Definition: Self-organization is the interaction
of a set of processes or structures at a lower
level of a system to yield global structures or
behavior at a higher level

• Example: Chemical reactions
• Contrast to: Centralized, algorithmic behavior
• System behavior that is not the sum of

component behaviors is called emergent

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 15

Stigmergy
• Definition: A variety of self-organization

in which mobile agents interact via their
shared environment

• Contrast to: direct interaction;
centralized interaction

• Examples:
– termites gathering chips,
– ants foraging,
– slime mold aggregation

David Keil Evolutionary computation in dynamic persistent environments 10/04 16

Indirect interaction

• Agents A and B (right)
may interact with each
other indirectly via shared variable x

• Features:
– anonymity (recipient ID not used in access)
– time delay (state changes persist)
– space decoupling (agents A, B need not meet)

Interaction via persistent, observable state
changes, in which the destination of output is
any agent that observes these state changes

Evolutionary computation in dynamic
persistent environments

David Keil 10/04

David Keil Evolutionary computation in dynamic persistent environments 10/04 17

Indirect interaction and
multiagent systems

• In a MAS characterized by locality of interaction
and mobility of agents, it is only possible for
agents to influence overall system behavior
remotely, i.e., indirectly

• Richness of multiagent interaction:
– due partly to ability of each agent to interact

with multiple others
– hence indirectly with all others (otherwise

system partitions)

David Keil Evolutionary computation in dynamic persistent environments 10/04 18

References
D. Goldin and D. Keil. Modeling indirect
interaction in open computational systems.
Proceedings, TAPOCS 2003.

Z. Michalewicz. Genetic algorithms + data
structures = evolution programs, 3rd Ed.
Springer, 1996.

D. Wolper and W. Macready. No free lunch
theorems for search. Santa Fe Institute
technical report SFI-TR-95-02-010, 1995.

