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Parallel and distributed computing

• What is sequential computing?
• How is parallel computation different?
• Concurrent processing, multitasking, 

and networks
• Parallel theoretical models
• Memory models
• Languages for parallel programming
• Parallel-prefix computation
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Why parallel computing is 
worth looking at

• Networked PCs can cooperate today to perform 
gigantic tasks in parallel cheaply

• Multi-CPU servers are common today to meet the 
needs of client/server computing

• “Moore’s Law”, which pictures computer speed 
doubling every 1.5 years, is losing steam; loophole 
is lack of real-life performance guarantees

• In a 1-gigaherz CPU, electricity will travel only 1 
inch per clock cycle, close to size of chip

• Your brain’s billions of neurons work in parallel
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Sequential computing
• The 50-year-old Von Neumann architecture

defines most computing today:
- one processor (e.g., Pentium)
- data is in memory
- program is in memory
- enables general-purpose 
computing

• The microprocessor (central processing unit, 
CPU) carries out a fetch/execute cycle, 
retrieving and executing machine instructions 
one at a time
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Today’s sequential computing 
has parallel features

• The Pentium pipelines its fetch-execute 
cycle: as an instruction executes, the 
processor fetches the next instruction

• The Pentium looks ahead and speculatively 
executes certain instructions

• Multitasking executes different programs 
concurrently

• PCs operate on networks



Parallel computing David Keil    Theory of computing       4/04

5D. Keil 63.460 Theory of Computing FSC Spring 2004

Concurrent processing
• A processor may run two or more programs 

at the same time (multitasking)
• To do so, it saves its current state in one 

program’s fetch/execute cycle, and loads 
the state of another program’s cycle, to run 
a time slice of that program, numerous 
times per second

• A process is a programming abstraction 
that simulates ownership of all computer 
resources
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Networked computing
• Users may communicate with 

each other through a network, 
built around one or more servers

• Examples: local area networks; the Internet
• In client/server computing, the server runs a 

program to fulfill requests from client programs
• Client/server example: a user on a client PC 

queries a database located on the server via a 
database management system running on the 
server
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A thread simulates 
ownership of a CPU

• One program may run multiple threads, 
e.g., for disk access and user I/O

• The processor executes multiple threads 
concurrently
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A pipe simulates 
interprocess communication

• A process that produces data may make 
results available before it completes

• A second process works immediately on 
the first data that enters the pipeline

• Familiar example: the conveyer on an 
assembly line
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Sockets are used for 
inter-CPU communication

• Sockets, unlike pipes, are a bidirectional 
abstraction

• The Berkeley sockets standard, introduced 
with BSD UNIX, permits unrelated processes 
to communicate

• Processes may communicate via sockets 
using a protocol
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Theoretical models of 
parallel computation

• PRAM (Parallel Random-Access 
Memory): an extension of the Von 
Neumann architecture to multiple CPUs 
sharing memory

• Circuit model: 
Processing is hard-wired 
into a combinational circuit 
that executes an algorithm
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Data and instruction parallelism
• SIMD (single-instruction, multiple-data): 

each CPU applies the same program 
instruction to its own data

• MIMD (multiple-instruction, multiple-
data): each CPU runs its own program

• SIMD lost ground to MIMD because it 
required specialized hardware; even 
simple specialized CPUs can’t compete 
with Pentiums on cost
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Great speed gains are 
possible with parallelism

• The folklore speedup theorem:
with p processors, the maximum speedup, 
versus one processor, is p

• False! Counter-examples:
- if RAM access is slower than

network communication
- if doubling data doubles cache size
- if intermediate calculations occupy

great time resources
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Memory models
• Shared memory:

assumes uniform 
memory access time

• Distributed shared memory (DSM): 
assumes data is distributed, so latency 
(memory-access delay) may 
be longer if data 
is owned by a remote 
CPU than if it is 
owned by the CPU using it
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Cache coherence
• To make slow RAM access appear fast, a 

cache is used on CPUs today, parallel and 
sequential

• Using a cache is somewhat like keeping a 
phone list on your desk to avoid paging 
through a large phone book

• CPUs that share memory 
need to keep a common 
view of RAM
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Languages for parallel computing
• MPI (Message-Passing Interface): 

A low-level language that is gaining 
momentum

• TOP-C (Task-Oriented Parallel C): 
A languaged derived from C for use in 
distributed-memory environments; supports 
high-level structures such as arrays, objects

• CILK: For shared memory, developed at MIT
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Goals in parallel-computing 
software development tools

• Heterogeneity: A software tool should be 
usable on different computer systems

• Interoperability: Different systems on 
which different implementations of a tool 
were used should be able to take part in the 
same computation
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Parallel prefix computation

• CPUs (boxes here) exchange data and CPU addresses 
across wider and wider gaps

• In four steps, a 16-CPU array can apply an associative 
operator (such as +, here) to 16 data items and accumulate 
the result (blue) in rightmost CPU. 
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