
Parallel computing David Keil Theory of computing 4/04

1D. Keil 63.460 Theory of Computing FSC Spring 2004

Parallel and distributed computing

• What is sequential computing?
• How is parallel computation different?
• Concurrent processing, multitasking,

and networks
• Parallel theoretical models
• Memory models
• Languages for parallel programming
• Parallel-prefix computation

2D. Keil 63.460 Theory of Computing FSC Spring 2004

Why parallel computing is
worth looking at

• Networked PCs can cooperate today to perform
gigantic tasks in parallel cheaply

• Multi-CPU servers are common today to meet the
needs of client/server computing

• “Moore’s Law”, which pictures computer speed
doubling every 1.5 years, is losing steam; loophole
is lack of real-life performance guarantees

• In a 1-gigaherz CPU, electricity will travel only 1
inch per clock cycle, close to size of chip

• Your brain’s billions of neurons work in parallel

Parallel computing David Keil Theory of computing 4/04

3D. Keil 63.460 Theory of Computing FSC Spring 2004

Sequential computing
• The 50-year-old Von Neumann architecture

defines most computing today:
- one processor (e.g., Pentium)
- data is in memory
- program is in memory
- enables general-purpose
computing

• The microprocessor (central processing unit,
CPU) carries out a fetch/execute cycle,
retrieving and executing machine instructions
one at a time

4D. Keil 63.460 Theory of Computing FSC Spring 2004

Today’s sequential computing
has parallel features

• The Pentium pipelines its fetch-execute
cycle: as an instruction executes, the
processor fetches the next instruction

• The Pentium looks ahead and speculatively
executes certain instructions

• Multitasking executes different programs
concurrently

• PCs operate on networks

Parallel computing David Keil Theory of computing 4/04

5D. Keil 63.460 Theory of Computing FSC Spring 2004

Concurrent processing
• A processor may run two or more programs

at the same time (multitasking)
• To do so, it saves its current state in one

program’s fetch/execute cycle, and loads
the state of another program’s cycle, to run
a time slice of that program, numerous
times per second

• A process is a programming abstraction
that simulates ownership of all computer
resources

6D. Keil 63.460 Theory of Computing FSC Spring 2004

Networked computing
• Users may communicate with

each other through a network,
built around one or more servers

• Examples: local area networks; the Internet
• In client/server computing, the server runs a

program to fulfill requests from client programs
• Client/server example: a user on a client PC

queries a database located on the server via a
database management system running on the
server

Parallel computing David Keil Theory of computing 4/04

7D. Keil 63.460 Theory of Computing FSC Spring 2004

A thread simulates
ownership of a CPU

• One program may run multiple threads,
e.g., for disk access and user I/O

• The processor executes multiple threads
concurrently

8D. Keil 63.460 Theory of Computing FSC Spring 2004

A pipe simulates
interprocess communication

• A process that produces data may make
results available before it completes

• A second process works immediately on
the first data that enters the pipeline

• Familiar example: the conveyer on an
assembly line

Parallel computing David Keil Theory of computing 4/04

9D. Keil 63.460 Theory of Computing FSC Spring 2004

Sockets are used for
inter-CPU communication

• Sockets, unlike pipes, are a bidirectional
abstraction

• The Berkeley sockets standard, introduced
with BSD UNIX, permits unrelated processes
to communicate

• Processes may communicate via sockets
using a protocol

10D. Keil 63.460 Theory of Computing FSC Spring 2004

Theoretical models of
parallel computation

• PRAM (Parallel Random-Access
Memory): an extension of the Von
Neumann architecture to multiple CPUs
sharing memory

• Circuit model:
Processing is hard-wired
into a combinational circuit
that executes an algorithm

Parallel computing David Keil Theory of computing 4/04

11D. Keil 63.460 Theory of Computing FSC Spring 2004

Data and instruction parallelism
• SIMD (single-instruction, multiple-data):

each CPU applies the same program
instruction to its own data

• MIMD (multiple-instruction, multiple-
data): each CPU runs its own program

• SIMD lost ground to MIMD because it
required specialized hardware; even
simple specialized CPUs can’t compete
with Pentiums on cost

12D. Keil 63.460 Theory of Computing FSC Spring 2004

Great speed gains are
possible with parallelism

• The folklore speedup theorem:
with p processors, the maximum speedup,
versus one processor, is p

• False! Counter-examples:
- if RAM access is slower than

network communication
- if doubling data doubles cache size
- if intermediate calculations occupy

great time resources

Parallel computing David Keil Theory of computing 4/04

13D. Keil 63.460 Theory of Computing FSC Spring 2004

Memory models
• Shared memory:

assumes uniform
memory access time

• Distributed shared memory (DSM):
assumes data is distributed, so latency
(memory-access delay) may
be longer if data
is owned by a remote
CPU than if it is
owned by the CPU using it

14D. Keil 63.460 Theory of Computing FSC Spring 2004

Cache coherence
• To make slow RAM access appear fast, a

cache is used on CPUs today, parallel and
sequential

• Using a cache is somewhat like keeping a
phone list on your desk to avoid paging
through a large phone book

• CPUs that share memory
need to keep a common
view of RAM

Parallel computing David Keil Theory of computing 4/04

15D. Keil 63.460 Theory of Computing FSC Spring 2004

Languages for parallel computing
• MPI (Message-Passing Interface):

A low-level language that is gaining
momentum

• TOP-C (Task-Oriented Parallel C):
A languaged derived from C for use in
distributed-memory environments; supports
high-level structures such as arrays, objects

• CILK: For shared memory, developed at MIT

16D. Keil 63.460 Theory of Computing FSC Spring 2004

Goals in parallel-computing
software development tools

• Heterogeneity: A software tool should be
usable on different computer systems

• Interoperability: Different systems on
which different implementations of a tool
were used should be able to take part in the
same computation

Parallel computing David Keil Theory of computing 4/04

17D. Keil 63.460 Theory of Computing FSC Spring 2004

Parallel prefix computation

• CPUs (boxes here) exchange data and CPU addresses
across wider and wider gaps

• In four steps, a 16-CPU array can apply an associative
operator (such as +, here) to 16 data items and accumulate
the result (blue) in rightmost CPU.

18D. Keil 63.460 Theory of Computing FSC Spring 2004

References
Lecture notes and drawings by Gene Cooperman,

COM 3640 Parallel Algorithms, Northeastern
University, Winter 1998.

