

CSCI 460: Theory of Computing

David M. Keil, Framingham State University, Spring 2013

SYLLABUS

Invitation

What does a computer-science professional need

to know about abstract models of computation?

Do you have a precise way to define computation

and computing power?

Having learned something about programming

and about operating systems, applications, and

databases, would you like to go deeper? Would you

like to explore what the core of computing is, what the

outer limits of computing are, and what separates the

hardest computable problems from ones that can’t be

solved at all? If so, then this course has something to

offer you.

Our inquiry

This course seeks to provide an environment to

explore theoretical questions that have practical

implications. One question is: What should matter to

you in the course material? What does the course offer

that you can use, as a computing professional?

Topic 1 (sets, languages, and models): Are there

more functions, or programs? Does it matter?

Topic 2 (finite automata): What can state-

transition systems model?

Topic 3 (pushdown automata): Can a stack enable

state-transition systems to solve more problems? How

do compilers work?

Topic 4 (Turing machines): Can a state-transition

system with infinite tape model more computations

than with a stack?

Topic 5 (random-access machines and recursive

functions): What functions are computable?

What computational problems can’t be solved?

Topic 6 (interactive computation):

Is communication part of computation?

Does concurrency require new models?

Topic 7 (multi-stream interaction): Is multi-agent,

asynchronous interaction more powerful than

sequential interaction? How does the brain work?

Meeting times

Tue 6:30-9:50 p.m., Hemenway Hall 132

To contact me

Office hours (Hemenway Hall 318A):

 M 3:30-4:30 p.m.; W 10:30 a.m.-11:30 p.m.;

F 9:30-10:30 a.m.; others by appointment

Telephone: (508) 626-4724

Email: dkeil@framingham.edu

URL: www.framingham.edu/~dkeil/toc-matls.html

Course description (FSU catalog)

An introduction to theoretical computer science

and some key applications. Course examines models

of computation, including finite automata,

transducers, pushdown automata, and Turing

machines. Concepts of formal language theory are

applied to lexical analyzer and compiler construction

in programming-language translation. The course will

include an introduction to the notions of computability

and computational complexity, concepts used in

parallel computation, and some aspects of artificial

intelligence.

Prerequisites: CSCI 271 Data Structures and

either MATH 292 Discrete Mathematics I or MATH

215 Finite Mathematics.

Reading

Hopcroft, Motwani, and Ullman, Introduction to

Automata Theory, Languages, and Computation,

3rd Ed. (Addison-Wesley, 2007), 0-321-45536-3

Handout material that will include papers on

computability and interaction

Slides: See handouts and course web site.

I like the textbook because it explains most of the

main concepts of the course. The slides and study

questions help tell which concepts are most important

to the course.

David Keil CSCI 460 Theory of Computing Framingham State University Spring 2013

Core objectives

The entire course will be guided by the following

objectives and intended outcomes:

0a. Participate in class activities throughout

the semester

0b. Solve problems as part of a team

0c. Present results in the classroom

0d. Present written results

0e. Show knowledge of facts and concepts

0f. Summarize the semester’s learning

0g. Relate theoretical concepts to applications

1a. Use the notation of formal language theory

1b. Describe the logic-circuit model of computation

2a. Construct a finite automaton with a given behavior

2b. Prove that an automaton accepts a given language

2c. Give the regular expressions for a finite automaton

2d. Use constructive proof to show expressiveness of

finite automata

3a. Explain the pushdown-automaton model

3d. Give a proof of expressiveness for pushdown

automata

4a. Describe the Turing-machine model of

computation

4b. Show a problem to be TM decidable

4c. Show a problem to be undecidable

5a. Describe the random-access-machine model

5b. Explain the relation between recursive definability

and computability of functions

5c. Show expressiveness of the TM or RAM model

5d. Describe the Chomsky hierarchy of models of

computation

6a. Distinguish algorithmic from interactive

computation

6b. Describe a model of sequential interactive

computation

7a. Describe forms of concurrency

7b. Describe a model of parallel computation

7c. Describe connectionist and multi-agent models

For other objectives, see topic slides.

Basic or prerequisite skills

a. Evaluate a formula in propositional or predicate

logic

b. Explain what are sets, relations, and functions

c. Explain what are strings, arrays, and stacks

d. Explain proof by contradiction and the inductive

proof method

e. Define and describe directed graphs

Classroom format and grades

The essay, “What we do in my classroom,” is part

of this syllabus. It has guidelines for assignments,

collaboration, and grading. As it explains, for each

topic, we have presentations, group work, discussion,

assignments, and quizzes. Assigned work and quiz

questions help to assess attainment of learning

objectives.

Our classroom environment emphasizes active

inquiry, participation, respect, and support among all

participants. Learning is seen as the interactive

construction of knowledge by the learner. We ask

each other questions and investigate problems

together.

Work includes small groups and blackboard work

and report backs from each student. A semester

project brings together the learning from the different

topics and assignments. Frequent assignments and

quizzes monitor progress and enable second chances.

Grades assess learning based on attainment of the

stated objectives of the course. I score each item of

work, or grading criterion, on a scale of 0 to 1.0.

Models of computation

Our central inquiry is about simple abstract

representations of systems that transform symbols;

i.e., models of computation. By the end of the course,

you will have assembled a set of explanations, in your

own words, about the power of some models of

computation.

Our foundation is a group of concepts presented in

discrete-mathematics courses: logic, proofs, sets,

cardinality, relations, graphs, and functions. We will

start with proofs that certain objects, such as real

numbers, predicates, and functions, are uncountable.

We will use logic and methods of proof to explore

relationships among certain sets (e.g., languages),

certain graphs (e.g., automata), and certain functions

(e.g., computable ones).

We will investigate three increasingly powerful

machine models associated with state-transition

systems, each of which corresponds to a language

class (kinds of input sequences the model can

recognize). This hierarchy of simple models of

computation consists of finite automata, stack

machines, and three equivalent models, Turing

machines, random access machines, and recursively

definable functions.

David Keil CSCI 460 Theory of Computing Framingham State University Spring 2013

As we are discussing finite-state and pushdown

automata, we will address program compilation,

which puts these theoretical concepts into practice.

We will also look at theoretical models of

interactive systems and parallel and distributed

systems. We will present results showing that

interaction requires more expressive models than

those for algorithms. Our hypothesis is that multi-

stream interaction requires more expressive models

than sequential interaction.

This course differs from the other theoretical

course in Computer Science, CSCI 347, Analysis of

Algorithms, in that our concern here is models and

their expressiveness or computational power, rather

than design, performance, or efficiency.

It is expected that before taking CSCI 460,

students are familiar, from their work with Discrete

Math and Data Structures, with the notions of logic,

sets, functions, relations, graphs, mathematical proof,

different implementations of collections of data, and

algorithms used to manipulate them.

Semester grading weights

The following categories group course objectives

and outcomes (see previous page), which are assessed

by means of assignments, quizzes, exams, and records

of classroom discussion and presentations.

Application of concepts

 core topic objectives 35

 other topic objectives 10

Knowledge of facts 10

Written contribution 20

Presenting results in person 10

Group activity 5

Summary and reflection 5

Attendance 0 5

 100

Semester project

Each student will summarize the learning in this

course in a project that includes proofs of

expressiveness and limitations of models of

computation, done as part of assignments. Optional

parts of the project include research and coding

related to the course content. This project is part of the

capstone project of the Computer Science major’s CS

concentration.

Research interest of instructor

Two special research themes are:

 Can systems of three or more interacting

entities solve problems that two computing

entities cannot?

 Can indirect interaction via the environment

(e.g., bulletin boards, markers left on trails)

give multi-agent systems more power than

message passing?

I’m writing a doctoral thesis on scalable models of

computation for multi-agent systems. Students in

Theory of Computing are invited to participate in the

research process by learning about these models and

brainstorming about this question.

Accommodations

“Students with disabilities who request

accommodations are to provide Documentation

Confirmation from the Office of Academic Support

within the first two weeks of class. Academic Support

is located in the Center for Academic Support and

Advising (CASA). Please call (508) 626-4906 if you

have questions or if you need to schedule an

appointment.” (See www.framingham.edu/ CASA/

Accommodations/accomm.htm.)

David Keil CSCI 460 Theory of Computing Framingham State University Spring 2013

Course Plan

Dates Topic Readings

1/22 Introduction and discrete-math review Handouts1,2; Hopcroft-Motwani-

Ullman, Ch. 1; Savage3, Ch. 1

1/29 1. Sets, languages, and models Handouts
4,5,6,7

2/5-2/12 2. Deterministic finite automata, regular languages, and

lexical analysis

H-M-U, Ch. 2-4

2/12 Research proposals

2/19 Problem-solving quizzes on topics 1-2

2/19 – 3/5 3. Pushdown automata, context-free grammars, and parsing H-M-U, Ch. 5-7

3/5 – 3/12 4. Turing machines and undecidability H-M-U, Ch. 8-9

3/12 Research reports and quiz review

3/26 Problem-solving quizzes on topics 3-4

3/26 – 4/2 5. Random access machines and recursively definable functions Handout
8

4/2 Make-up quizzes on topics 1-4

4/2 – 4/9 6. Models of interactive computation Handouts
9,10,11

4/16 Research reports and quiz review

4/16 Problem-solving quizzes on topics 5-6

4/16 – 4/23 7. Models of concurrency and multi-stream interaction Handouts
12,13,14

4/23 – 4/30 Course summary, quizzes, and research reports

4/30 Final exam (problem solving)

5/7 Final exam (multiple choice)

Optional objectives questions

1 D. Keil, Theory uses definitions, examples, theorems, and proofs, 2011.
2 D. Keil, Abstractions, functions, and recursion, 2011.
3 John E. Savage, Models of Computation (Addison Wesley, 1998).
4 D. Keil, The diagonal proof technique, 2008.
5 P. Fejer and D. Simovici, Mathematical Foundations of Computer Science, 1991, excerpt.
6 D. Keil, Why induction and coinduction are important, 2010.
7 Handout on Gödel’s theorem
8 Davis, Sigal, Weyuker, excerpt.
9 D. Keil, Definitions related to interaction, 2009.
10 P. Wegner, Why interaction is more powerful than algorithms, Comm. ACM, 5/97.
11 D. Goldin, Persistent Turing Machines as a model of interactive computation, 1999.
12 B. Maggs, L. Matheson, R. Tarjan, Models of Parallel computation: A survey and synthesis, 1995.
13 D. Keil and D. Goldin, Indirect interaction vs. message passing, 2009.
14 Handout on neural nets

