Arithmetical Structures on Graphs

Darren Glass

Gettysburg College

(Joint work with various folks)

Let G be a finite connected graph with n vertices.

Let G be a finite connected graph with n vertices.

Let G be a finite connected graph with n vertices.

Let A be the adjacency matrix of the graph. Let D be an $n \times n$ diagonal matrix where diagonal entries are the nonnegative integers $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$. Let $M=D-A$.

Let G be a finite connected graph with n vertices.

Let A be the adjacency matrix of the graph. Let D be an $n \times n$ diagonal matrix where diagonal entries are the nonnegative integers $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$. Let $M=D-A$.

$$
M=\left[\begin{array}{cccc}
d_{1} & -1 & -1 & -1 \\
-1 & d_{2} & -1 & 0 \\
-1 & -1 & d_{3} & -1 \\
-1 & 0 & -1 & d_{4}
\end{array}\right]
$$

$$
M=\left[\begin{array}{cccc}
d_{1} & -1 & -1 & -1 \\
-1 & d_{2} & -1 & 0 \\
-1 & -1 & d_{3} & -1 \\
-1 & 0 & -1 & d_{4}
\end{array}\right]
$$

If there exists a vector $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$ so that:

- All r_{i} are positive integers
- $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$
- $\mathbf{r} \cdot M=\overrightarrow{0}$
then we say that (\mathbf{r}, \mathbf{d}) is an arithmetical structure on G.

Note that for any d, M will have rank $n-1$ so \mathbf{r} is unique if it exists.

$$
M=\left[\begin{array}{cccc}
d_{1} & -1 & -1 & -1 \\
-1 & d_{2} & -1 & 0 \\
-1 & -1 & d_{3} & -1 \\
-1 & 0 & -1 & d_{4}
\end{array}\right]
$$

If there exists a vector $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$ so that:

- All r_{i} are positive integers
- $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$
- $\mathbf{r} \cdot M=\overrightarrow{0}$
then we say that (\mathbf{r}, \mathbf{d}) is an arithmetical structure on G.

Note that for any \mathbf{d}, M will have rank $n-1$ so \mathbf{r} is unique if it exists. (and vice versa)

Example

Let D be matrix with diagonal entries $\mathbf{d}=\operatorname{deg}\left(v_{i}\right)$.

Example

Let D be matrix with diagonal entries $\mathbf{d}=\operatorname{deg}\left(v_{i}\right)$.

$$
M=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \text { is the Laplacian of the graph. }
$$

Example

Let D be matrix with diagonal entries $\mathbf{d}=\operatorname{deg}\left(v_{i}\right)$.
$M=\left[\begin{array}{cccc}3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2\end{array}\right]$ is the Laplacian of the graph.
All rows sum to zero $\Rightarrow(1,1, \ldots, 1) \cdot M=\overrightarrow{0}$

Example

Let D be matrix with diagonal entries $\mathbf{d}=\operatorname{deg}\left(v_{i}\right)$.
$M=\left[\begin{array}{cccc}3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2\end{array}\right]$ is the Laplacian of the graph.
All rows sum to zero $\Rightarrow(1,1, \ldots, 1) \cdot M=\overrightarrow{0}$
$((1,1, \ldots, 1), \mathbf{d})$ is an arithmetical structure on G.

Parenthetical Aside

For all graphs G, we have that $(L,(1, \ldots, 1))$ is an arithmetical structure on G.

Parenthetical Aside

For all graphs G, we have that $(L,(1, \ldots, 1))$ is an arithmetical structure on G.

Definition

Let $\mathcal{D}=\left\{\left(d_{1}, \ldots, d_{n}\right) \mid \sum d_{i}=0\right\}$. The Jacobian of G is defined to be $\mathcal{D} / \operatorname{Im}(L)$.

Analogous to the Jacobian of a curve in algebraic geometry, and studied by many people (Bak, Baker-Norine, Propp, ...) under many different names (Critical Groups, Sandpile Groups, ...).

Parenthetical Aside

For all graphs G, we have that $(L,(1, \ldots, 1))$ is an arithmetical structure on G.

Definition

Let $\mathcal{D}=\left\{\left(d_{1}, \ldots, d_{n}\right) \mid \sum d_{i}=0\right\}$. The Jacobian of G is defined to be $\mathcal{D} / \operatorname{Im}(L)$.

Analogous to the Jacobian of a curve in algebraic geometry, and studied by many people (Bak, Baker-Norine, Propp, ...) under many different names (Critical Groups, Sandpile Groups, ...).

For any arithmetical structure (\mathbf{r}, \mathbf{d}) on G we can define an analogue to the Jacobian by considering $\operatorname{Ker}(\mathbf{r}) / \operatorname{Im}(M)$. Can think of this as extending the analogy to curves with components of higher multiplicity.

Another Example

Let $M=\left[\begin{array}{cccc}3 & -1 & -1 & -1 \\ -1 & 1 & -1 & 0 \\ -1 & -1 & 11 & -1 \\ -1 & 0 & -1 & 1\end{array}\right]$ and $\mathbf{r}=(3,4,1,4)$.
Then $\mathbf{r} \cdot M=\overrightarrow{0}$
$\Rightarrow(\mathbf{r},(3,1,11,1))$ is an arithmetical structure on G.

What Does This Have To Do With Number Theory?

What Does This Have To Do With Number Theory?

Definition

An arithmetical structure on G is a labeling of the vertices of G with nonnegative integers r_{i} so that $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$ and for each vertex i we have that $r_{i} \mid \sum_{(i, j) \in E(G)} r_{j}$

An arithmetical structure is a vector $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ so that:

- $r_{1} \mid r_{2}+r_{3}+r_{4}$
- $r_{2} \mid r_{1}+r_{3}$
- $r_{3} \mid r_{1}+r_{2}+r_{4}$
- $r_{4} \mid r_{1}+r_{3}$

An arithmetical structure is a vector $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ so that:

- $r_{1} \mid r_{2}+r_{3}+r_{4}$
- $r_{2} \mid r_{1}+r_{3}$
- $r_{3} \mid r_{1}+r_{2}+r_{4}$
- $r_{4} \mid r_{1}+r_{3}$

An arithmetical structure is a vector $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ so that:

- $r_{1} \mid r_{2}+r_{3}+r_{4}$
- $r_{2} \mid r_{1}+r_{3}$
- $r_{3} \mid r_{1}+r_{2}+r_{4}$
- $r_{4} \mid r_{1}+r_{3}$

Question

For a fixed graph, how many arithmetical structures are there?

Question

For a fixed graph, how many arithmetical structures are there?

Theorem (Lorenzini)

For a fixed graph, there are finitely many arithmetical structures.

Question

For a fixed graph, how many arithmetical structures are there?

Theorem (Lorenzini)

For a fixed graph, there are finitely many arithmetical structures.

For small graphs, use Mathematica!

```
In[88]= Do[
        Do[Do[Do[If[GCD[a,b, c, d] == 1, If [Divisible[b+c+d,a], If[Divisible[a + c, b], If[
            Divisible[a+c, d], If[Divisible[a+b+d, c], AppendTo[S,{a,b, c, d}]]]]]],
                {a,1,50}], {b, 1, 50}], {c, 1, 50}], {d, 1, 50}]
In[89]= S
Ou{[89]= {{1, 1, 1, 1}, {3,1, 1, 1}, {1, 2, 1, 1}, {5, 3, 1, 1}, {3, 4, 1, 1}, {2, 1, 2, 1},
    {4, 1, 2, 1}, {8, 5, 2, 1}, {1, 1, 3, 1}, {3, 2, 3, 1}, {1, 4, 3, 1}, {7, 10, 3, 1},
    {2, 1, 4, 1}, {6, 1, 4, 1}, {8, 3, 4, 1}, {14, 9, 4, 1}, {1, 3, 5, 1}, {4, 1, 6, 1},
    {3,10, 7, 1}, {4, 3, 8, 1}, {2, 5, 8, 1}, {18,5, 12, 1}, {4, 9, 14, 1},
    {12, 5, 18, 1}, {1, 1, 1, 2}, {1, 2, 1, 2}, {5, 2, 1, 2}, {7, 4, 1, 2}, {3, 1, 3, 2},
    {9,4,3,2}, {1, 2, 5, 2}, {1, 4, 7, 2}, {3,4, 9, 2}, {5, 1, 1, 3}, {5,6,1,3},
    {4,3,2,3}, {8, 1, 4, 3}, {2,3,4,3}, {1, 1, 5, 3}, {1, 6, 5, 3}, {4, 1, 8, 3},
    {3,1,1,4}, {7, 2, 1, 4}, {3,4,1,4}, {11,6,1, 4}, {1, 1, 3, 4}, {9, 2, 3, 4},
    {1,4,3,4}, {1, 2, 7, 4}, {3, 2, 9, 4}, {1,6,11, 4}, {8, 1, 2, 5}, {2, 1, 8, 5},
    {18, 1, 12, 5}, {12, 1, 18, 5}, {5, 3, 1, 6}, {11, 4, 1, 6}, {1, 3, 5, 6},
    {1,4,11, 6}, {14, 1, 4, 9}, {4, 1, 14, 9}, {7, 1, 3, 10}, {3, 1, 7, 10}}
In[90]:= Length[S]
Out[90]= 6
```


Question

For a given family of graphs (paths, cycles, etc) are there better ways to count?

Question

For a given family of graphs (paths, cycles, etc) are there better ways to count?

Lemma

If v is a vertex of degree two which is connected to u and w, and $d \mid r_{u}$ and $d \mid r_{v}$ then $d \mid r_{w}$.

Proof: $r_{v}\left|\left(r_{u}+r_{w}\right) \Rightarrow d\right|\left(r_{u}+r_{w}\right) \Rightarrow d \mid r_{w}$

Lemma

If v is a vertex of degree two which is connected to u and w, and $r_{v}>r_{u}$ and $r_{v}>r_{w}$ then $r_{v}=r_{u}+r_{w}$.

Proof: $r_{v} \mid\left(r_{u}+r_{w}\right)<2 r_{v} \Rightarrow r_{v}=r_{u}+r_{w}$.

Lemma

If v is a vertex of degree two which is connected to u and w, and $r_{v}>r_{u}$ and $r_{v}>r_{w}$ then $r_{v}=r_{u}+r_{w}$.

Proof: $r_{v} \mid\left(r_{u}+r_{w}\right)<2 r_{v} \Rightarrow r_{v}=r_{u}+r_{w}$.
Moreover, removing vertex v gives a valid arithmetical structure on a (smaller) graph:

Let P_{n} denote the path on n vertices.

$$
r_{1}-r_{2}-r_{3}-\cdots-r_{n}
$$

Let P_{n} denote the path on n vertices.

$$
r_{1}-r_{2}-r_{3}-\cdots-r_{n}
$$

Note: $r_{1} \mid r_{2}$,

Let P_{n} denote the path on n vertices.

$$
r_{1}-r_{2}-r_{3}-\cdots-r_{n}
$$

Note: $r_{1} \mid r_{2}$, so by lemma $r_{1} \mid r_{3}$

Let P_{n} denote the path on n vertices.

$$
r_{1}-r_{2}-r_{3}-\cdots-r_{n}
$$

Note: $r_{1} \mid r_{2}$, so by lemma $r_{1} \mid r_{3}$ and all other r_{i}.

Let P_{n} denote the path on n vertices.

$$
r_{1}-r_{2}-r_{3}-\cdots-r_{n}
$$

Note: $r_{1} \mid r_{2}$, so by lemma $r_{1} \mid r_{3}$ and all other r_{i}. But $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$, so we must have $r_{1}=1$.

Let P_{n} denote the path on n vertices.

$$
r_{1}-r_{2}-r_{3}-\cdots-r_{n}
$$

Note: $r_{1} \mid r_{2}$, so by lemma $r_{1} \mid r_{3}$ and all other r_{i}.
But $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$, so we must have $r_{1}=1$. Similarly, $r_{n}=1$.
$1-r_{2}-r_{3}-\cdots-1$

Note: No two consecutive entries are equal unless they are 1 .

Note: No two consecutive entries are equal unless they are 1 .

So either all entries are equal to 1 or there is an entry that is a 'local maximum.'

Note: No two consecutive entries are equal unless they are 1 .

So either all entries are equal to 1 or there is an entry that is a 'local maximum.' Therefore it is equal to sum of its neighbors and we can remove it.

Note: No two consecutive entries are equal unless they are 1 .

So either all entries are equal to 1 or there is an entry that is a 'local maximum.' Therefore it is equal to sum of its neighbors and we can remove it.

We can repeat this process until we get all 1's.

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Example ($n=2$)
 1 1

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Example $(n=3)$

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

$$
\begin{aligned}
& \text { Example }(n=4) \\
& 1-1-1-1
\end{aligned}
$$

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Example ($n=4$)

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Example ($n=4$)

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Analagous to some work of Richard Stanley, this implies that the number of structures is $1,2,5,14,42, \ldots$

Conversely...

Any arithmetical structure on P_{n} can be obtained by starting with the trivial structure on P_{k} for some $k \leq n$ and repeatedly adding vertices that are the sum of two adjacent vertices.

Analagous to some work of Richard Stanley, this implies that the number of structures is $1,2,5,14,42, \ldots$

Theorem

The number of arithmetical structures on P_{n} is given by the Catalan number

$$
C_{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

Arithmetical Structures on Cycles

Let C_{n} be a cycle on n vertices.

Arithmetical Structures on Cycles

Let C_{n} be a cycle on n vertices.

Similar story works. Any two consecutive elements must be relatively prime. So either all entries are equal to one or there is a local maximum that is the sum of its neighbors.

Arithmetical Structures on Cycles

Any structure can be attained by putting the number one in a positive number of vertices, and then filling others in with the sum of their neighbors.

Arithmetical Structures on Cycles

Any structure can be attained by putting the number one in a positive number of vertices, and then filling others in with the sum of their neighbors.

Arithmetical Structures on Cycles

Any structure can be attained by putting the number one in a positive number of vertices, and then filling others in with the sum of their neighbors.

Arithmetical Structures on Cycles

Any structure can be attained by putting the number one in a positive number of vertices, and then filling others in with the sum of their neighbors.

Arithmetical Structures on Cycles

Any structure can be attained by putting the number one in a positive number of vertices, and then filling others in with the sum of their neighbors.

Theorem

The number of arithmetical structures on C_{n} with k ones is

$$
\left(\binom{n}{n-k}\right)=\binom{2 n-k-1}{n-k}
$$

In particular, the total number of arithmetical structures on C_{n} is

$$
\sum_{k=1}^{n}\left(\binom{n}{n-k}\right)=\left(\binom{n+1}{n-1}\right)=\binom{2 n-1}{n-1}
$$

Things get much more complicated when vertices have higher degrees.

Things get much more complicated when vertices have higher degrees.

Let Q_{n} be the path on n vertices with first edge doubled:

The number of Arithmetical Structures on Q_{n} is $4 C_{n-1}-2 C_{n-2}$.

Things get much more complicated when vertices have higher degrees.

Let Q_{n} be the path on n vertices with first edge doubled:

The number of Arithmetical Structures on Q_{n} is $4 C_{n-1}-2 C_{n-2}$. If first edge is tripled, there are:

$$
9 C_{n-1}-9 C_{n-2}-\frac{9}{n-1}\binom{2 n-6}{n-2}-\frac{4}{n-1}\binom{2 n-7}{n-2}-\frac{5}{n-1}\binom{2 n-8}{n-2}-\frac{6}{n-1}\binom{2 n-9}{n-2}-\frac{7}{n-1}\binom{2 n-10}{n-2}
$$

Approach With Josh Wagner (Gettysburg '19)

Instead of counting the total number of structures, count the number of 'smooth structures'.

Approach With Josh Wagner (Gettysburg '19)

Instead of counting the total number of structures, count the number of 'smooth structures'.

Definition
A smooth arithmetical structure is one where all $d_{i}>1$.

Approach With Josh Wagner (Gettysburg '19)

Instead of counting the total number of structures, count the number of 'smooth structures'.

Definition

A smooth arithmetical structure is one where all $d_{i}>1$.
Equivalently, no label r_{v} is the sum of its neighbors.

Approach With Josh Wagner (Gettysburg '19)

Instead of counting the total number of structures, count the number of 'smooth structures'.

Definition

A smooth arithmetical structure is one where all $d_{i}>1$.
Equivalently, no label r_{v} is the sum of its neighbors.
Seems as though it is easier to count these and then separately count the ways they can be subdivided to give all structures.

Example

- The only smooth structures on graphs Q_{k} are:

Example

- The only smooth structures on graphs Q_{k} are:

- Each of the first three can be subdivided to a structure on Q_{n} in C_{n-1} ways.

Example

- The only smooth structures on graphs Q_{k} are:

- Each of the first three can be subdivided to a structure on Q_{n} in C_{n-1} ways.
- The final one can be subdivided in $C_{n-1}-2 C_{n-2}$ ways.

Example

- The only smooth structures on graphs Q_{k} are:

$2 \backsim 3$

$2-1$

- Each of the first three can be subdivided to a structure on Q_{n} in C_{n-1} ways.
- The final one can be subdivided in $C_{n-1}-2 C_{n-2}$ ways.
- Hence, total number of structures on Q_{n} is $4 C_{n-1}-2 C_{n-2}$.

This approach works for other families of graphs

Example

- The only smooth structures on graphs Q_{k} are:

2

3

\square

- Each of the first three can be subdivided to a structure on Q_{n} in C_{n-1} ways.
- The final one can be subdivided in $C_{n-1}-2 C_{n-2}$ ways.
- Hence, total number of structures on Q_{n} is $4 C_{n-1}-2 C_{n-2}$.

This approach works for other families of graphs but appears to get very ugly very quickly.

Reasons I like this topic

- Intermingling of additive number theory and multiplicative number theory.
- Gives a way to introduce topics in modular arithmetic while working on open research problems.
- Connects number theory to linear algebra and algebraic geometry.
- Very accessible to both computer experimentation and exploration 'by hand'.
- Lots of fruit that appears to be low-hanging...

Reasons I like this topic

- Intermingling of additive number theory and multiplicative number theory.
- Gives a way to introduce topics in modular arithmetic while working on open research problems.
- Connects number theory to linear algebra and algebraic geometry.
- Very accessible to both computer experimentation and exploration 'by hand'.
- Lots of fruit that appears to be low-hanging... though might not be!

