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Let G be a finite connected graph with n vertices.

Let A be the adjacency matrix of the graph. Let D be an n×n
diagonal matrix where diagonal entries are the nonnegative
integers d = (d1,d2,d3,d4). Let M = D−A.

M =


d1 −1 −1 −1
−1 d2 −1 0
−1 −1 d3 −1
−1 0 −1 d4


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M =


d1 −1 −1 −1
−1 d2 −1 0
−1 −1 d3 −1
−1 0 −1 d4


If there exists a vector r = (r1, . . . , rn) so that:

All ri are positive integers

gcd(r1, . . . , rn) = 1

r ·M =
−→
0

then we say that (r,d) is an arithmetical structure on G .

Note that for any d, M will have rank n−1 so r is unique if it
exists.

(and vice versa)
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Example

Let D be matrix with diagonal entries d = deg(vi ).

M =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 is the Laplacian of the graph.

All rows sum to zero ⇒ (1,1, . . . ,1) ·M =
−→
0

((1,1, . . . ,1),d) is an arithmetical structure on G .
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Parenthetical Aside

For all graphs G , we have that (L,(1, . . . ,1)) is an arithmetical
structure on G .

Definition

Let D = {(d1, . . . ,dn)|∑di = 0}. The Jacobian of G is defined to
be D/Im(L).

Analogous to the Jacobian of a curve in algebraic geometry, and
studied by many people (Bak, Baker-Norine, Propp, . . . ) under
many different names (Critical Groups, Sandpile Groups, . . . ).

For any arithmetical structure (r,d) on G we can define an
analogue to the Jacobian by considering Ker(r)/Im(M). Can think
of this as extending the analogy to curves with components of
higher multiplicity.
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Another Example

Let M =


3 −1 −1 −1
−1 1 −1 0
−1 −1 11 −1
−1 0 −1 1

 and r = (3,4,1,4).

Then r ·M =
−→
0

⇒ (r,(3,1,11,1)) is an arithmetical structure on G .
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What Does This Have To Do With Number Theory?

Definition

An arithmetical structure on G is a labeling of the vertices of G
with nonnegative integers ri so that gcd(r1, . . . , rn) = 1 and for
each vertex i we have that ri | ∑

(i ,j)∈E(G)

rj
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r1

r4

r2

r3

An arithmetical structure is a vector (r1, r2, r3, r4) so that:

r1|r2 + r3 + r4

r2|r1 + r3

r3|r1 + r2 + r4

r4|r1 + r3

Darren Glass Arithmetical Structures on Graphs



1

1

1

1

An arithmetical structure is a vector (r1, r2, r3, r4) so that:

r1|r2 + r3 + r4

r2|r1 + r3

r3|r1 + r2 + r4

r4|r1 + r3

Darren Glass Arithmetical Structures on Graphs



3

4

4

1

An arithmetical structure is a vector (r1, r2, r3, r4) so that:

r1|r2 + r3 + r4

r2|r1 + r3

r3|r1 + r2 + r4

r4|r1 + r3

Darren Glass Arithmetical Structures on Graphs



Question

For a fixed graph, how many arithmetical structures are there?

Theorem (Lorenzini)

For a fixed graph, there are finitely many arithmetical structures.

For small graphs, use Mathematica!

In[88]:= Do[
Do[Do[Do[If[GCD[a, b, c, d] ⩵ 1, If[Divisible[b + c + d, a], If[Divisible[a + c, b], If[

Divisible[a + c, d], If[Divisible[a + b + d, c], AppendTo[S, {a, b, c, d}]]]]]],
{a, 1, 50}], {b, 1, 50}], {c, 1, 50}], {d, 1, 50}]

In[89]:= S

Out[89]= {{1, 1, 1, 1}, {3, 1, 1, 1}, {1, 2, 1, 1}, {5, 3, 1, 1}, {3, 4, 1, 1}, {2, 1, 2, 1},
{4, 1, 2, 1}, {8, 5, 2, 1}, {1, 1, 3, 1}, {3, 2, 3, 1}, {1, 4, 3, 1}, {7, 10, 3, 1},
{2, 1, 4, 1}, {6, 1, 4, 1}, {8, 3, 4, 1}, {14, 9, 4, 1}, {1, 3, 5, 1}, {4, 1, 6, 1},
{3, 10, 7, 1}, {4, 3, 8, 1}, {2, 5, 8, 1}, {18, 5, 12, 1}, {4, 9, 14, 1},
{12, 5, 18, 1}, {1, 1, 1, 2}, {1, 2, 1, 2}, {5, 2, 1, 2}, {7, 4, 1, 2}, {3, 1, 3, 2},
{9, 4, 3, 2}, {1, 2, 5, 2}, {1, 4, 7, 2}, {3, 4, 9, 2}, {5, 1, 1, 3}, {5, 6, 1, 3},
{4, 3, 2, 3}, {8, 1, 4, 3}, {2, 3, 4, 3}, {1, 1, 5, 3}, {1, 6, 5, 3}, {4, 1, 8, 3},
{3, 1, 1, 4}, {7, 2, 1, 4}, {3, 4, 1, 4}, {11, 6, 1, 4}, {1, 1, 3, 4}, {9, 2, 3, 4},
{1, 4, 3, 4}, {1, 2, 7, 4}, {3, 2, 9, 4}, {1, 6, 11, 4}, {8, 1, 2, 5}, {2, 1, 8, 5},
{18, 1, 12, 5}, {12, 1, 18, 5}, {5, 3, 1, 6}, {11, 4, 1, 6}, {1, 3, 5, 6},
{1, 4, 11, 6}, {14, 1, 4, 9}, {4, 1, 14, 9}, {7, 1, 3, 10}, {3, 1, 7, 10}}

In[90]:= Length[S]

Out[90]= 63

In[87]:= S = {}

Out[87]= {}
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Question

For a given family of graphs (paths, cycles, etc) are there better
ways to count?

Lemma

If v is a vertex of degree two which is connected to u and w, and
d |ru and d |rv then d |rw .

ru rv rw

Proof: rv |(ru + rw )⇒ d |(ru + rw )⇒ d |rw
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Lemma

If v is a vertex of degree two which is connected to u and w, and
rv > ru and rv > rw then rv = ru + rw .

ru rv rw

Proof: rv |(ru + rw ) < 2rv ⇒ rv = ru + rw .

Moreover, removing vertex v gives a valid arithmetical structure on
a (smaller) graph:

ru rw
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Let Pn denote the path on n vertices.

r1 r2 r3 . . . rn

Note: r1|r2, so by lemma r1|r3 and all other ri .
But gcd(r1, . . . , rn) = 1, so we must have r1 = 1. Similarly, rn = 1.
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1 r2 r3 . . . 1

Note: No two consecutive entries are equal unless they are 1.

So either all entries are equal to 1 or there is an entry that is a
‘local maximum.’ Therefore it is equal to sum of its neighbors and
we can remove it.

We can repeat this process until we get all 1’s.

Darren Glass Arithmetical Structures on Graphs



1 r2 r3 . . . 1

Note: No two consecutive entries are equal unless they are 1.

So either all entries are equal to 1 or there is an entry that is a
‘local maximum.’ Therefore it is equal to sum of its neighbors and
we can remove it.

We can repeat this process until we get all 1’s.

Darren Glass Arithmetical Structures on Graphs



1 r2 r3 . . . 1

Note: No two consecutive entries are equal unless they are 1.

So either all entries are equal to 1 or there is an entry that is a
‘local maximum.’

Therefore it is equal to sum of its neighbors and
we can remove it.

We can repeat this process until we get all 1’s.

Darren Glass Arithmetical Structures on Graphs



1 r2 r3 . . . 1

Note: No two consecutive entries are equal unless they are 1.

So either all entries are equal to 1 or there is an entry that is a
‘local maximum.’ Therefore it is equal to sum of its neighbors and
we can remove it.

We can repeat this process until we get all 1’s.

Darren Glass Arithmetical Structures on Graphs



1 r2 r3 . . . 1

Note: No two consecutive entries are equal unless they are 1.

So either all entries are equal to 1 or there is an entry that is a
‘local maximum.’ Therefore it is equal to sum of its neighbors and
we can remove it.

We can repeat this process until we get all 1’s.

Darren Glass Arithmetical Structures on Graphs



Conversely...

Any arithmetical structure on Pn can be obtained by starting with
the trivial structure on Pk for some k ≤ n and repeatedly adding
vertices that are the sum of two adjacent vertices.

Example (n = 2)

1 1
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Conversely...

Any arithmetical structure on Pn can be obtained by starting with
the trivial structure on Pk for some k ≤ n and repeatedly adding
vertices that are the sum of two adjacent vertices.

Example (n = 3)

1 1 1

1 2 1
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Conversely...

Any arithmetical structure on Pn can be obtained by starting with
the trivial structure on Pk for some k ≤ n and repeatedly adding
vertices that are the sum of two adjacent vertices.

Example (n = 4)

1 1 1 1

1 1 2 1

1 2 1 1

1 3 2 1

1 2 3 1
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Conversely...

Any arithmetical structure on Pn can be obtained by starting with
the trivial structure on Pk for some k ≤ n and repeatedly adding
vertices that are the sum of two adjacent vertices.

Analagous to some work of Richard Stanley, this implies that the
number of structures is 1,2,5,14,42, . . .

Theorem

The number of arithmetical structures on Pn is given by the
Catalan number

Cn−1 =
1

n

(
2n−2

n−1

)
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Arithmetical Structures on Cycles

Let Cn be a cycle on n vertices.

Similar story works. Any two consecutive elements must be
relatively prime. So either all entries are equal to one or there is a
local maximum that is the sum of its neighbors.
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Arithmetical Structures on Cycles

Any structure can be attained by putting the number one in a
positive number of vertices, and then filling others in with the sum
of their neighbors.

1

1

⇒

1

2

1 ⇒

2 1

2

1

⇒

2 1

3

2

1 ⇒

2 1

3

52

1
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Theorem

The number of arithmetical structures on Cn with k ones is((
n

n−k

))
=

(
2n−k−1

n−k

)
In particular, the total number of arithmetical structures on Cn is

n

∑
k=1

((
n

n−k

))
=

((
n+ 1

n−1

))
=

(
2n−1

n−1

)
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Things get much more complicated when vertices have higher
degrees.

Let Qn be the path on n vertices with first edge doubled:

v1 v2 v3 . . . vn

The number of Arithmetical Structures on Qn is 4Cn−1−2Cn−2.

If first edge is tripled, there are:

9Cn−1−9Cn−2−
9

n−1

(
2n−6

n−2

)
− 4

n−1

(
2n−7

n−2

)
− 5

n−1

(
2n−8

n−2

)
− 6

n−1

(
2n−9

n−2

)
− 7

n−1

(
2n−10

n−2

)
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Approach With Josh Wagner (Gettysburg ’19)

Instead of counting the total number of structures, count the
number of ‘smooth structures’.

Definition

A smooth arithmetical structure is one where all di > 1.
Equivalently, no label rv is the sum of its neighbors.

Seems as though it is easier to count these and then separately
count the ways they can be subdivided to give all structures.
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Example

The only smooth structures on graphs Qk are:

1 1 1 2 2 1

2 3 2 1

Each of the first three can be subdivided to a structure on Qn

in Cn−1 ways.

The final one can be subdivided in Cn−1−2Cn−2 ways.

Hence, total number of structures on Qn is 4Cn−1−2Cn−2.

This approach works for other families of graphs but appears to
get very ugly very quickly.
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Reasons I like this topic

Intermingling of additive number theory and multiplicative
number theory.

Gives a way to introduce topics in modular arithmetic while
working on open research problems.

Connects number theory to linear algebra and algebraic
geometry.

Very accessible to both computer experimentation and
exploration ‘by hand’.

Lots of fruit that appears to be low-hanging...

though might
not be!
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