A Group Activites Approach to Number Theory

Stefan Erickson
Dept. of Mathematics \& Computer Science
Colorado College
Stefan.Erickson@ColoradoCollege.edu

July 27, 2017

Number Theory at Colorado College

- Block Plan - Every class is three and a half weeks long.

Number Theory at Colorado College

- Block Plan - Every class is three and a half weeks long.
- Students only take one class at a time, professors only teach one class at a time.

Number Theory at Colorado College

- Block Plan - Every class is three and a half weeks long.
- Students only take one class at a time, professors only teach one class at a time.
- Classes meet every day for 2.5-3 hours in morning, office hours / problem sessions in the afternoon.

Number Theory at Colorado College

- Block Plan - Every class is three and a half weeks long.
- Students only take one class at a time, professors only teach one class at a time.
- Classes meet every day for 2.5-3 hours in morning, office hours / problem sessions in the afternoon.
- Provides opportunity for in-depth group activites during class.

Teaching Philosophy

- Number Theory serves as our "introduction to proofs" course.

Teaching Philosophy

- Number Theory serves as our "introduction to proofs" course.
- Structured worksheets guide students to finding patterns.

Teaching Philosophy

- Number Theory serves as our "introduction to proofs" course.
- Structured worksheets guide students to finding patterns.
- "Number Theory: A Historical Approach" by John Watkins.

Worksheets

- Primitive Pythagorean Triples
- Linear Diophantine Equations
- Pell's Equation
- Euler's Theorem
- Primitive Roots
- Quadratic Residues
- Quadratic Reciprocity

Worksheets

- Primitive Pythagorean Triples
- Linear Diophantine Equations
- Pell's Equation
- Euler's Theorem
- Primitive Roots
- Quadratic Residues
- Quadratic Reciprocity

Powers Modulo n, Prime n

Modulo 7					
$1^{1} \equiv 1$	$2^{1} \equiv 2$	$3^{1} \equiv 3$	$4^{1} \equiv 4$	$5^{1} \equiv 5$	$6^{1} \equiv 6$
$1^{2} \equiv 1$	$2^{2} \equiv 4$	$3^{2} \equiv 2$	$4^{2} \equiv 2$	$5^{2} \equiv 4$	$6^{2} \equiv 1$
$1^{3} \equiv 1$	$2^{3} \equiv 1$	$3^{3} \equiv 6$	$4^{3} \equiv 1$	$5^{3} \equiv 6$	$6^{3} \equiv 6$
$1^{4} \equiv 1$	$2^{4} \equiv 2$	$3^{4} \equiv 4$	$4^{4} \equiv 4$	$5^{4} \equiv 2$	$6^{4} \equiv 1$
$1^{5} \equiv 1$	$2^{5} \equiv 4$	$3^{5} \equiv 5$	$4^{5} \equiv 2$	$5^{5} \equiv 3$	$6^{5} \equiv 6$
$1^{6} \equiv 1$	$2^{6} \equiv 1$	$3^{6} \equiv 1$	$4^{6} \equiv 1$	$5^{6} \equiv 1$	$6^{6} \equiv 1$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Powers Modulo n, Prime n

Modulo 7					
$1^{1} \equiv 1$	$2^{1} \equiv 2$	$3^{1} \equiv 3$	$4^{1} \equiv 4$	$5^{1} \equiv 5$	$6^{1} \equiv 6$
$1^{2} \equiv 1$	$2^{2} \equiv 4$	$3^{2} \equiv 2$	$4^{2} \equiv 2$	$5^{2} \equiv 4$	$6^{2} \equiv 1$
$1^{3} \equiv 1$	$2^{3} \equiv 1$	$3^{3} \equiv 6$	$4^{3} \equiv 1$	$5^{3} \equiv 6$	$6^{3} \equiv 6$
$1^{4} \equiv 1$	$2^{4} \equiv 2$	$3^{4} \equiv 4$	$4^{4} \equiv 4$	$5^{4} \equiv 2$	$6^{4} \equiv 1$
$1^{5} \equiv 1$	$2^{5} \equiv 4$	$3^{5} \equiv 5$	$4^{5} \equiv 2$	$5^{5} \equiv 3$	$6^{5} \equiv 6$
$1^{6} \equiv 1$	$2^{6} \equiv 1$	$3^{6} \equiv 1$	$4^{6} \equiv 1$	$5^{6} \equiv 1$	$6^{6} \equiv 1$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Powers will eventually reach 1 .

Fermat's Little Theorem

- Have students find powers modulo $11,13,17$, and 19.

Fermat's Little Theorem

- Have students find powers modulo $11,13,17$, and 19.
- Make a conjecture as to what is the smallest power for which all nonzero congruence classes are congruent 1 .

Fermat's Little Theorem

- Have students find powers modulo $11,13,17$, and 19.
- Make a conjecture as to what is the smallest power for which all nonzero congruence classes are congruent 1 .

Theorem (Fermat, 1640)
For any prime p and integer a not divisible by p,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Euler's Theorem Handout

Introduction

We have already seen Fermat's Little Theorem, which states that $a^{p-1} \equiv 1(\bmod p)$ for any $p \nmid a$. Unfortunately, this only applies for prime numbers p. Our goal today is to generalize to composite numbers n.

Euler's Theorem Handout, Question 1

Question 1

Start by taking powers of a modulo n for all numbers a between 1 and $n-1$, when $n=4,6,8,9,10,12$, and 15 (you should divide and conquer in your groups). Which numbers between 1 and $n-1$ will eventually have a power equal to 1 modulo n ? Do you notice any patterns in the smallest powers for which are equal to 1 modulo n ?

Euler's Theorem Handout, Question 1

For composite n, not all powers will eventually equal 1 .

$$
\begin{aligned}
& 2^{1} \equiv 2 \quad(\bmod 10) \\
& 2^{2} \equiv 4 \quad(\bmod 10) \\
& 2^{3} \equiv 8 \quad(\bmod 10) \\
& 2^{4} \equiv 6 \quad(\bmod 10) \\
& 2^{5} \equiv 2 \quad(\bmod 10)
\end{aligned}
$$

Euler's Theorem Handout, Question 1

\[

\]

Euler's Theorem Handout, Question 1

\[

\]

If the integer a is relatively prime to n, the powers of a will eventually reach 1.

Euler's Theorem Handout, Question 2

The numbers a for which $a^{k} \equiv 1(\bmod n)$ appear to be those which are relatively prime to n. Perhaps the set of numbers between 1 and n which are relatively prime to n is relevant. Make a table for each n between 2 and 12 of the set of relatively prime a between 1 and n and record how many elements are in each set.

Euler's Theorem Handout, Question 2

The numbers a for which $a^{k} \equiv 1(\bmod n)$ appear to be those which are relatively prime to n. Perhaps the set of numbers between 1 and n which are relatively prime to n is relevant. Make a table for each n between 2 and 12 of the set of relatively prime a between 1 and n and record how many elements are in each set.

n	2	3	4	5	6	7	8	9	10	11	12
$\#$	1	2	2	4	2	6	4	6	4	10	4

Euler's Theorem Handout, Question 3

Question 3

The size of each set is seemingly random for the first 12 values of n, but maybe there's a deeper pattern. Let $\phi(n)$ be the number of elements between 1 and n which relatively prime to n. What do know about $\phi(p)$ for any prime number p ? Find the values of $\phi(4), \phi(9), \phi(25)$, and $\phi(49)$. What do you think $\phi\left(p^{2}\right)$ is? Explain why your formula for $\phi\left(p^{2}\right)$ is true for all primes p.

Euler's Theorem Handout, Question 3

p	2	3	5	7	11	13	17	19
$\phi(p)$	1	2	4	6	10	12	16	18

Conjecture
For all primes $p, \phi(p)=p-1$.

Euler's Theorem Handout, Question 3

p	2	3	5	7	11	13	17	19
$\phi(p)$	1	2	4	6	10	12	16	18

Conjecture
For all primes $p, \phi(p)=p-1$.

p^{2}	4	9	25	49
$\phi\left(p^{2}\right)$	2	6	20	42

Conjecture
For all prime $p, \phi\left(p^{2}\right)=p^{2}-p=p \cdot(p-1)$.

Euler's Theorem Handout, Question 3

Question 3 (Cont.)
Now try $\phi(8), \phi(16)$, and $\phi(32)$. From the values of $\phi\left(2^{n}\right)$, what do you think a formula for $\phi\left(p^{n}\right)$ would be? Check this formula with $\phi(27)$ and (if you're brave) $\phi(81)$. Explain why your formula for $\phi\left(p^{n}\right)$ is true for all primes p.

Euler's Theorem Handout, Question 3

2^{n}	2	4	8	16	32
$\phi\left(2^{n}\right)$	1	2	4	8	16

Conjecture
$\phi\left(2^{n}\right)=2^{n-1}=2^{n}-2^{n-1}$.

Euler's Theorem Handout, Question 3

2^{n}	2	4	8	16	32
$\phi\left(2^{n}\right)$	1	2	4	8	16

Conjecture
$\phi\left(2^{n}\right)=2^{n-1}=2^{n}-2^{n-1}$.

3^{n}	3	9	27	81
$\phi\left(2^{n}\right)$	2	6	18	54

Conjecture
$\phi\left(3^{n}\right)=2 \cdot 3^{n-1}=3^{n}-3^{n-1}$.

Euler's Theorem Handout, Question 3

2^{n}	2	4	8	16	32
$\phi\left(2^{n}\right)$	1	2	4	8	16

Conjecture
$\phi\left(2^{n}\right)=2^{n-1}=2^{n}-2^{n-1}$.

3^{n}	3	9	27	81
$\phi\left(2^{n}\right)$	2	6	18	54

Conjecture
$\phi\left(3^{n}\right)=2 \cdot 3^{n-1}=3^{n}-3^{n-1}$.

$$
\phi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1} \cdot(p-1)
$$

Euler's Theorem Handout, Question 4

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21), \phi(33)$, and $\phi(35)$. What is a formula for $\phi(p q)$ for distinct primes p and q ? Explain why your formula for $\phi(p q)$ is true for all distinct primes p and q.

Euler's Theorem Handout, Question 4

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21), \phi(33)$, and $\phi(35)$. What is a formula for $\phi(p q)$ for distinct primes p and q ? Explain why your formula for $\phi(p q)$ is true for all distinct primes p and q.

n	15	21	33	35
$\phi(n)$	8	12	20	24

Euler's Theorem Handout, Question 4

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21), \phi(33)$, and $\phi(35)$. What is a formula for $\phi(p q)$ for distinct primes p and q ? Explain why your formula for $\phi(p q)$ is true for all distinct primes p and q.

n	$3 \cdot 5$	$3 \cdot 7$	$3 \cdot 11$	$5 \cdot 7$
$\phi(n)$	$2 \cdot 4$	$2 \cdot 6$	$2 \cdot 10$	$4 \cdot 6$

Euler's Theorem Handout, Question 4

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21), \phi(33)$, and $\phi(35)$. What is a formula for $\phi(p q)$ for distinct primes p and q ? Explain why your formula for $\phi(p q)$ is true for all distinct primes p and q.

n	$3 \cdot 5$	$3 \cdot 7$	$3 \cdot 11$	$5 \cdot 7$
$\phi(n)$	$2 \cdot 4$	$2 \cdot 6$	$2 \cdot 10$	$4 \cdot 6$

$$
\phi(p \cdot q)=(p-1) \cdot(q-1)
$$

Euler's Theorem Handout, Question 4

Question 4 (Cntd.)

Now try other products, such as $\phi(6), \phi(12), \phi(18), \phi(20), \phi(24)$, and $\phi(30)$. On the basis of these investigations, find a general formula for $\phi(n)$ based on the prime factorization of n.

n	6	12	18	20	24
$\phi(n)$	2	4	6	8	8

$$
\phi\left(p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}\right)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)=\phi\left(p_{1}^{e_{1}}\right) \cdots \phi\left(p_{k}^{e_{k}}\right)
$$

Euler's Theorem Handout, Question 5

Question 5

Let's return to the powers of a modulo n. Is there any relationship between the smallest powers of a for which $a^{k} \equiv 1(\bmod n)$ and the values of $\phi(n)$? Make a conjecture similar to Fermat's Little Theorem which holds for any modulus n. Test your conjecture for all the powers you found in \#1.

Euler's Theorem Handout, Question 5

Fact: $\phi(10)=4$.

Euler's Theorem Handout, Question 5

Fact: $\phi(10)=4$.

\[

\]

Euler's Theorem Handout, Question 5

Fact: $\phi(10)=4$.

\[

\]

Conjecture
If a and n are relatively prime, then $a^{\phi(n)} \equiv 1(\bmod n)$.

Euler's Theorem Handout, Question 6

Question 6
Prove your conjecture. Here's an idea. Take any fixed a which is relatively prime to n. What happens to the values of ax $(\bmod n)$ as x ranges through all number relatively prime to n ? Try this explicitly for $n=9, n=10$, and $n=15$. Notice that you'll get exactly the same product over all $a x(\bmod n)$ as you do when you take a product over all $x(\bmod n)$ when x ranges through all numbers relatively prime to n. Use this fact to prove your conjecture. This generalized version is known as Euler's Theorem.

Conclusions

- Looking from a different point of view can reveal patterns.

Conclusions

- Looking from a different point of view can reveal patterns.
- Working collaboratively and discussion leads to understanding.

Conclusions

- Looking from a different point of view can reveal patterns.
- Working collaboratively and discussion leads to understanding.
- Finding patterns in numbers is fun!

Conclusions

- Looking from a different point of view can reveal patterns.
- Working collaboratively and discussion leads to understanding.
- Finding patterns in numbers is fun!

