A Group Activites Approach to Number Theory

Stefan Erickson Dept. of Mathematics & Computer Science Colorado College Stefan.Erickson@ColoradoCollege.edu

July 27, 2017

Block Plan - Every class is three and a half weeks long.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Block Plan Every class is three and a half weeks long.
- Students only take one class at a time, professors only teach one class at a time.

- Block Plan Every class is three and a half weeks long.
- Students only take one class at a time, professors only teach one class at a time.

 Classes meet every day for 2.5–3 hours in morning, office hours / problem sessions in the afternoon.

- Block Plan Every class is three and a half weeks long.
- Students only take one class at a time, professors only teach one class at a time.
- Classes meet every day for 2.5–3 hours in morning, office hours / problem sessions in the afternoon.
- Provides opportunity for in-depth group activites during class.

Teaching Philosophy

► Number Theory serves as our "introduction to proofs" course.

(ロ)、(型)、(E)、(E)、 E) の(の)

Teaching Philosophy

Number Theory serves as our "introduction to proofs" course.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Structured worksheets guide students to finding patterns.

Teaching Philosophy

- ► Number Theory serves as our "introduction to proofs" course.
- Structured worksheets guide students to finding patterns.
- "Number Theory: A Historical Approach" by John Watkins.

Worksheets

- Primitive Pythagorean Triples
- Linear Diophantine Equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Pell's Equation
- Euler's Theorem
- Primitive Roots
- Quadratic Residues
- Quadratic Reciprocity

Worksheets

- Primitive Pythagorean Triples
- Linear Diophantine Equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Pell's Equation
- Euler's Theorem
- Primitive Roots
- Quadratic Residues
- Quadratic Reciprocity

Powers Modulo *n*, Prime *n*

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Powers Modulo n, Prime n

		Mod	<u>ulo 7</u>		
	$2^1 \equiv 2$				
	$2^2 \equiv 4$				
$1^3 \equiv 1$	$2^3 \equiv 1$	$3^3 \equiv 6$	$4^3 \equiv 1$	$5^3 \equiv 6$	$6^3 \equiv 6$
$1^4 \equiv 1$	$2^4 \equiv 2$	$3^4 \equiv 4$	$4^4 \equiv 4$	$5^4 \equiv 2$	$6^4 \equiv 1$
$1^5\equiv 1$	$2^5 \equiv 4$	$3^5 \equiv 5$	$4^5 \equiv 2$	$5^5\equiv 3$	$6^5 \equiv 6$
$1^6\equiv 1$	$2^6 \equiv 1$	$3^6 \equiv 1$	$4^6 \equiv 1$	$5^6 \equiv 1$	$6^6 \equiv 1$
:	÷	÷	÷	÷	÷

Powers will eventually reach 1.

Fermat's Little Theorem

▶ Have students find powers modulo 11, 13, 17, and 19.

Fermat's Little Theorem

- ▶ Have students find powers modulo 11, 13, 17, and 19.
- Make a conjecture as to what is the smallest power for which all nonzero congruence classes are congruent 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fermat's Little Theorem

- ▶ Have students find powers modulo 11, 13, 17, and 19.
- Make a conjecture as to what is the smallest power for which all nonzero congruence classes are congruent 1.

Theorem (Fermat, 1640)

For any prime p and integer a not divisible by p,

$$a^{p-1} \equiv 1 \pmod{p}$$

Euler's Theorem Handout

Introduction

We have already seen Fermat's Little Theorem, which states that $a^{p-1} \equiv 1 \pmod{p}$ for any $p \nmid a$. Unfortunately, this only applies for prime numbers p. Our goal today is to generalize to composite numbers n.

Question 1

Start by taking powers of a modulo n for all numbers a between 1 and n - 1, when n = 4, 6, 8, 9, 10, 12, and 15 (you should divide and conquer in your groups). Which numbers between 1 and n - 1will eventually have a power equal to 1 modulo n? Do you notice any patterns in the smallest powers for which are equal to 1 modulo n?

For composite n, not all powers will eventually equal 1.

:

 $2^{1} \equiv 2 \pmod{10}$ $2^{2} \equiv 4 \pmod{10}$ $2^{3} \equiv 8 \pmod{10}$ $2^{4} \equiv 6 \pmod{10}$ $2^{5} \equiv 2 \pmod{10}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	<u>Modı</u>	<u>ulo 10</u>	
$1^{1} \equiv 1$ $1^{2} \equiv 1$ $1^{3} \equiv 1$	$3^1 \equiv 3$ $3^2 \equiv 9$ $3^3 \equiv 7$	$7^1 \equiv 7$ $7^2 \equiv 9$ $7^3 \equiv 3$	$egin{array}{c} 9^1 \equiv 9 \ 9^2 \equiv 1 \ 9^3 \equiv 9 \end{array}$
$1^4 \equiv 1$	$3^4 \equiv 1$	$7^4 \equiv 1$	$9^4 \equiv 1$
÷	÷	÷	÷

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If the integer a is relatively prime to n, the powers of a will eventually reach 1.

The numbers a for which $a^k \equiv 1 \pmod{n}$ appear to be those which are relatively prime to n. Perhaps the set of numbers between 1 and n which are relatively prime to n is relevant. Make a table for each n between 2 and 12 of the set of relatively prime a between 1 and n and record how many elements are in each set.

The numbers a for which $a^k \equiv 1 \pmod{n}$ appear to be those which are relatively prime to n. Perhaps the set of numbers between 1 and n which are relatively prime to n is relevant. Make a table for each n between 2 and 12 of the set of relatively prime a between 1 and n and record how many elements are in each set.

n	2	3	4	5	6	7	8	9	10	11	12
#	1	2	2	4	2	6	4	6	4	10	4

Question 3

The size of each set is seemingly random for the first 12 values of n, but maybe there's a deeper pattern. Let $\phi(n)$ be the number of elements between 1 and n which relatively prime to n. What do know about $\phi(p)$ for any prime number p? Find the values of $\phi(4)$, $\phi(9)$, $\phi(25)$, and $\phi(49)$. What do you think $\phi(p^2)$ is? Explain why your formula for $\phi(p^2)$ is true for all primes p.

(日) (同) (三) (三) (三) (○) (○)

p	2	3	5	7	11	13	17	19
$\phi(p)$	1	2	4	6	10	12	16	18

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conjecture

For all primes p, $\phi(p) = p - 1$.

p	2	3	5	7	11	13	17	19
$\phi(p)$	1	2	4	6	10	12	16	18

Conjecture

For all primes p, $\phi(p) = p - 1$.

<i>p</i> ²	4	9	25	49
$\phi(p^2)$	2	6	20	42

Conjecture

For all prime p, $\phi(p^2) = p^2 - p = p \cdot (p - 1)$.

Question 3 (Cont.)

Now try $\phi(8)$, $\phi(16)$, and $\phi(32)$. From the values of $\phi(2^n)$, what do you think a formula for $\phi(p^n)$ would be? Check this formula with $\phi(27)$ and (if you're brave) $\phi(81)$. Explain why your formula for $\phi(p^n)$ is true for all primes p.

ĺ	2 ⁿ	2	4	8	16	32
	$\phi(2^n)$	1	2	4	8	16

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conjecture $\phi(2^n) = 2^{n-1} = 2^n - 2^{n-1}.$

2 ⁿ	2	4	8	16	32
$\phi(2^n)$	1	2	4	8	16

Conjecture $\phi(2^n) = 2^{n-1} = 2^n - 2^{n-1}.$

3 ⁿ	3	9	27	81
$\phi(2^n)$	2	6	18	54

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjecture

 $\phi(3^n) = 2 \cdot 3^{n-1} = 3^n - 3^{n-1}.$

2 ⁿ	2	4	8	16	32
$\phi(2^n)$	1	2	4	8	16

Conjecture $\phi(2^n) = 2^{n-1} = 2^n - 2^{n-1}.$

3 ⁿ	3	9	27	81
$\phi(2^n)$	2	6	18	54

Conjecture

 $\phi(3^n) = 2 \cdot 3^{n-1} = 3^n - 3^{n-1}.$

$$\phi(p^n) = p^n - p^{n-1} = p^{n-1} \cdot (p-1)$$

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21)$, $\phi(33)$, and $\phi(35)$. What is a formula for $\phi(pq)$ for distinct primes p and q? Explain why your formula for $\phi(pq)$ is true for all distinct primes p and q.

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21)$, $\phi(33)$, and $\phi(35)$. What is a formula for $\phi(pq)$ for distinct primes p and q? Explain why your formula for $\phi(pq)$ is true for all distinct primes p and q.

n	15	21	33	35
$\phi(n)$	8	12	20	24

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21)$, $\phi(33)$, and $\phi(35)$. What is a formula for $\phi(pq)$ for distinct primes p and q? Explain why your formula for $\phi(pq)$ is true for all distinct primes p and q.

n	3 · 5	3 · 7	$3 \cdot 11$	$5 \cdot 7$
$\phi(n)$	2 · 4	2 · 6	$2 \cdot 10$	4 · 6

Question 4

Now try the product of two odd prime numbers, such as $\phi(15)$, $\phi(21)$, $\phi(33)$, and $\phi(35)$. What is a formula for $\phi(pq)$ for distinct primes p and q? Explain why your formula for $\phi(pq)$ is true for all distinct primes p and q.

n	3 · 5	3 · 7	$3 \cdot 11$	$5 \cdot 7$
$\phi(n)$	2 · 4	2 · 6	2 · 10	4 · 6

$$\phi(p\cdot q)=(p-1)\cdot(q-1)$$

Question 4 (Cntd.)

Now try other products, such as $\phi(6)$, $\phi(12)$, $\phi(18)$, $\phi(20)$, $\phi(24)$, and $\phi(30)$. On the basis of these investigations, find a general formula for $\phi(n)$ based on the prime factorization of n.

n	6	12	18	20	24
$\phi(n)$	2	4	6	8	8

$$\phi(p_1^{e_1}\cdots p_k^{e_k}) = p_1^{e_1-1}(p_1-1)\cdots p_k^{e_k-1}(p_k-1) = \phi(p_1^{e_1})\cdots \phi(p_k^{e_k})$$

Question 5

Let's return to the powers of a modulo n. Is there any relationship between the smallest powers of a for which $a^k \equiv 1 \pmod{n}$ and the values of $\phi(n)$? Make a conjecture similar to Fermat's Little Theorem which holds for any modulus n. Test your conjecture for all the powers you found in #1.

Fact: $\phi(10) = 4$.

Fact: $\phi(10) = 4$.

$$\begin{array}{cccc} & \underline{\text{Modulo 10}} \\ 1^1 \equiv 1 & 3^1 \equiv 3 & 7^1 \equiv 7 & 9^1 \equiv 9 \\ 1^2 \equiv 1 & 3^2 \equiv 9 & 7^2 \equiv 9 & 9^2 \equiv 1 \\ 1^3 \equiv 1 & 3^3 \equiv 7 & 7^3 \equiv 3 & 9^3 \equiv 9 \\ 1^4 \equiv 1 & 3^4 \equiv 1 & 7^4 \equiv 1 & 9^4 \equiv 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fact: $\phi(10) = 4$.

Modulo 10				
$egin{array}{c} 1^1 \equiv 1 \ 1^2 \equiv 1 \ 1^3 \equiv 1 \ 1^4 \equiv 1 \end{array}$	$3^{1} \equiv 3$ $3^{2} \equiv 9$ $3^{3} \equiv 7$ $3^{4} \equiv 1$	$7^{1} \equiv 7$ $7^{2} \equiv 9$ $7^{3} \equiv 3$ $7^{4} \equiv 1$	$9^{1} \equiv 9$ $9^{2} \equiv 1$ $9^{3} \equiv 9$ $9^{4} \equiv 1$	
• - • :	• <u> </u>	1	• <u> </u>	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjecture

If a and n are relatively prime, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Question 6

Prove your conjecture. Here's an idea. Take any fixed a which is relatively prime to n. What happens to the values of ax (mod n) as x ranges through all number relatively prime to n? Try this explicitly for n = 9, n = 10, and n = 15. Notice that you'll get exactly the same product over all ax (mod n) as you do when you take a product over all x (mod n) when x ranges through all numbers relatively prime to n. Use this fact to prove your conjecture. This generalized version is known as Euler's Theorem.

Looking from a different point of view can reveal patterns.

- Looking from a different point of view can reveal patterns.
- Working collaboratively and discussion leads to understanding.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Looking from a different point of view can reveal patterns.
- Working collaboratively and discussion leads to understanding.

Finding patterns in numbers is fun!

- Looking from a different point of view can reveal patterns.
- Working collaboratively and discussion leads to understanding.

Finding patterns in numbers is fun!