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Number Theory at Colorado College

I Block Plan - Every class is three and a half weeks long.

I Students only take one class at a time, professors only teach
one class at a time.

I Classes meet every day for 2.5–3 hours in morning,
office hours / problem sessions in the afternoon.

I Provides opportunity for in-depth group activites during class.
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Teaching Philosophy

I Number Theory serves as our “introduction to proofs” course.

I Structured worksheets guide students to finding patterns.

I “Number Theory: A Historical Approach” by John Watkins.
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I Euler’s Theorem

I Primitive Roots
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I Quadratic Reciprocity
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Powers Modulo n, Prime n

Modulo 7

11 ≡ 1 21 ≡ 2 31 ≡ 3 41 ≡ 4 51 ≡ 5 61 ≡ 6
12 ≡ 1 22 ≡ 4 32 ≡ 2 42 ≡ 2 52 ≡ 4 62 ≡ 1
13 ≡ 1 23 ≡ 1 33 ≡ 6 43 ≡ 1 53 ≡ 6 63 ≡ 6
14 ≡ 1 24 ≡ 2 34 ≡ 4 44 ≡ 4 54 ≡ 2 64 ≡ 1
15 ≡ 1 25 ≡ 4 35 ≡ 5 45 ≡ 2 55 ≡ 3 65 ≡ 6
16 ≡ 1 26 ≡ 1 36 ≡ 1 46 ≡ 1 56 ≡ 1 66 ≡ 1

...
...

...
...

...
...
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Powers will eventually reach 1.



Fermat’s Little Theorem

I Have students find powers modulo 11, 13, 17, and 19.

I Make a conjecture as to what is the smallest power for which
all nonzero congruence classes are congruent 1.

Theorem (Fermat, 1640)

For any prime p and integer a not divisible by p,

ap−1 ≡ 1 (mod p)
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Euler’s Theorem Handout

Introduction
We have already seen Fermat’s Little Theorem, which states that
ap−1 ≡ 1 (mod p) for any p - a. Unfortunately, this only applies
for prime numbers p. Our goal today is to generalize to composite
numbers n.



Euler’s Theorem Handout, Question 1

Question 1
Start by taking powers of a modulo n for all numbers a between 1
and n − 1, when n = 4, 6, 8, 9, 10, 12, and 15 (you should divide
and conquer in your groups). Which numbers between 1 and n − 1
will eventually have a power equal to 1 modulo n? Do you notice
any patterns in the smallest powers for which are equal to 1
modulo n?



Euler’s Theorem Handout, Question 1

For composite n, not all powers will eventually equal 1.

21 ≡ 2 (mod 10)

22 ≡ 4 (mod 10)

23 ≡ 8 (mod 10)

24 ≡ 6 (mod 10)

25 ≡ 2 (mod 10)

...



Euler’s Theorem Handout, Question 1

Modulo 10

11 ≡ 1 31 ≡ 3 71 ≡ 7 91 ≡ 9
12 ≡ 1 32 ≡ 9 72 ≡ 9 92 ≡ 1
13 ≡ 1 33 ≡ 7 73 ≡ 3 93 ≡ 9
14 ≡ 1 34 ≡ 1 74 ≡ 1 94 ≡ 1

...
...

...
...
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If the integer a is relatively prime to n, the powers of a will
eventually reach 1.



Euler’s Theorem Handout, Question 2

The numbers a for which ak ≡ 1 (mod n) appear to be those
which are relatively prime to n. Perhaps the set of numbers
between 1 and n which are relatively prime to n is relevant. Make
a table for each n between 2 and 12 of the set of relatively prime a
between 1 and n and record how many elements are in each set.

n 2 3 4 5 6 7 8 9 10 11 12

# 1 2 2 4 2 6 4 6 4 10 4
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Euler’s Theorem Handout, Question 3

Question 3
The size of each set is seemingly random for the first 12 values of
n, but maybe there’s a deeper pattern. Let φ(n) be the number of
elements between 1 and n which relatively prime to n. What do
know about φ(p) for any prime number p? Find the values of
φ(4), φ(9), φ(25), and φ(49). What do you think φ(p2) is?
Explain why your formula for φ(p2) is true for all primes p.



Euler’s Theorem Handout, Question 3

p 2 3 5 7 11 13 17 19

φ(p) 1 2 4 6 10 12 16 18

Conjecture

For all primes p, φ(p) = p − 1.

p2 4 9 25 49

φ(p2) 2 6 20 42

Conjecture

For all prime p, φ(p2) = p2 − p = p · (p − 1).
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Euler’s Theorem Handout, Question 3

Question 3 (Cont.)
Now try φ(8), φ(16), and φ(32). From the values of φ(2n), what
do you think a formula for φ(pn) would be? Check this formula
with φ(27) and (if you’re brave) φ(81). Explain why your formula
for φ(pn) is true for all primes p.



Euler’s Theorem Handout, Question 3

2n 2 4 8 16 32

φ(2n) 1 2 4 8 16

Conjecture

φ(2n) = 2n−1 = 2n − 2n−1.

3n 3 9 27 81

φ(2n) 2 6 18 54

Conjecture

φ(3n) = 2 · 3n−1 = 3n − 3n−1.

φ(pn) = pn − pn−1 = pn−1 · (p − 1)
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Euler’s Theorem Handout, Question 4

Question 4
Now try the product of two odd prime numbers, such as φ(15),
φ(21), φ(33), and φ(35). What is a formula for φ(pq) for distinct
primes p and q? Explain why your formula for φ(pq) is true for all
distinct primes p and q.

n 15 21 33 35

φ(n) 8 12 20 24
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Euler’s Theorem Handout, Question 4

Question 4 (Cntd.)
Now try other products, such as φ(6), φ(12), φ(18), φ(20), φ(24),
and φ(30). On the basis of these investigations, find a general
formula for φ(n) based on the prime factorization of n.

n 6 12 18 20 24

φ(n) 2 4 6 8 8

φ(pe11 · · · pekk ) = pe1−1
1 (p1 − 1) · · · pek−1

k (pk − 1) = φ(pe11 ) · · ·φ(pekk )



Euler’s Theorem Handout, Question 5

Question 5
Let’s return to the powers of a modulo n. Is there any relationship
between the smallest powers of a for which ak ≡ 1 (mod n) and
the values of φ(n)? Make a conjecture similar to Fermat’s Little
Theorem which holds for any modulus n. Test your conjecture for
all the powers you found in #1.



Euler’s Theorem Handout, Question 5

Fact: φ(10) = 4.

Modulo 10

11 ≡ 1 31 ≡ 3 71 ≡ 7 91 ≡ 9
12 ≡ 1 32 ≡ 9 72 ≡ 9 92 ≡ 1
13 ≡ 1 33 ≡ 7 73 ≡ 3 93 ≡ 9
14 ≡ 1 34 ≡ 1 74 ≡ 1 94 ≡ 1

...
...

...
...

Conjecture

If a and n are relatively prime, then aφ(n) ≡ 1 (mod n).
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Euler’s Theorem Handout, Question 6

Question 6
Prove your conjecture. Here’s an idea. Take any fixed a which is
relatively prime to n. What happens to the values of ax (mod n)
as x ranges through all number relatively prime to n? Try this
explicitly for n = 9, n = 10, and n = 15. Notice that you’ll get
exactly the same product over all ax (mod n) as you do when you
take a product over all x (mod n) when x ranges through all
numbers relatively prime to n. Use this fact to prove your
conjecture. This generalized version is known as Euler’s Theorem.
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I Looking from a different point of view can reveal patterns.

I Working collaboratively and discussion leads to understanding.

I Finding patterns in numbers is fun!
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