A card is drawn from a fair poker deck.

- $\quad \mathrm{P}($ red or a $)$
- What is the probability that the card is a seven or a spade (\uparrow)?

A card is drawn from a fair poker deck.

- $P(a$ or an even numbered card $)$
- $\quad \mathrm{P}$ (red card or a face card)

A card is drawn from a fair poker deck.

- $\mathrm{P}($ face card or $\boldsymbol{\vee})$
- \quad (lettered card or a red card)
- $\quad \mathrm{P}$ (even numbered card or a face card)

A card is drawn from a fair poker deck.

- P (odd numbered card or a black card)
- P (eight or an Ace)
- P (numbered card or a \leqslant)

A pair of fair six-sided dice is rolled.

- $\quad \mathrm{P}$ (at least one die displays a 2 or the sum is seven)
- P (only one die displays a 2 or the sum is five)
- $\quad \mathrm{P}$ (doubles or the sum is odd)

A pair of fair six-sided dice is rolled.

- P (sum of the numbers is seven and the sum is not odd)
- P (sum of the numbers is seven or the sum is not odd)
- P (sum is four or the second die displays a four)

A pair of fair six-sided dice is rolled.

- P (sum is not one)
- $\quad \mathrm{P}$ (sum is more than twelve)
- P (sum is at least five or the product is divisible by 5)

