2. State-space search

1. Constraint and optimization problems
2. Goal-driven search
3. Exhaustive search and intractability
4. Heuristics

Inquiry

- How do you solve problems?
- Can many problems solved using intelligence may be reduced to the search of an exponential-sized state space?
- Is it AI’s task to give approximate solutions to NP-hard problems?
- How might (a) NAO or (b) Siri operate as a goal-based agent?
2. State-space search

Topic objective

2. Explain how heuristics offer ways to pursue goals in exponentially large search spaces

Subtopic outcomes

2.1 Explain what constraint and optimization problems are
2.2a Explain goal-based state-space search*
2.2b Perform a goal-driven analysis of a problem with a game tree*
2.3 Apply the definition of *intractability* to a computational problem
2.4 Explain how heuristics are used to provide adequate solutions to hard search problems*
2. State-space search

1. Constraint and optimization problems

- How do you choose a career?
- A friend?
- A partner?
- A plan for the weekend?

Constraint and optimization problems

- *Constraint problem*: To find some value that satisfies a set of constraints or conditions
- *Constraint problem examples*:
 - Search
 - Pattern matching
 - Sort of a set of records
- *Optimization problem*: to find maximum or minimum valued solution to a constraint problem, among all solutions
Constraint satisfaction problems

Problem:
• A set x of variables $x_1, x_2, ..., x_n$
• A set C of constraints $C_1, C_2, ..., C_m$, that each specifies acceptable combinations of values for a certain subset of x
• A variable assignment to x that does not violate any of C is consistent or legal
• A variable assignment to all of x is complete
• Solution: a complete consistent variable assignment

Examples

• Constraint:
 – Search of an array of integers for a key value; for a value greater than 5; for a perfect square
 – Search of a database table for a record satisfying specification for three fields
• Optimization:
 – Search for the maximum perfect square
 – Search for the lowest-priced two-bath house
General form of CSPs and solutions

- **Advantage** of formulating problems as CSPs: standard state representations enable generic transition functions, goal tests, heuristics
- **Form of state**: set of partial variable assignments
- **Initial state**: no assignments
- **Successor function**: assigns value to one variable while violating no constraint
- **Goal test**: variable assignments are complete
- Order-independence of variable assignments makes **backtracking** helpful

Example: satisfiability (SAT)

- Given the constraint of a formula ϕ in propositional logic (logic with \neg, \land, \lor, \Rightarrow, no predicates, no quantifiers), does a set of variable assignments exist that satisfies ϕ (makes ϕ true)?
- **Examples**:
 (a) $p \land q \land r$
 (b) $(p \land q \lor \neg q)$
 (c) $p \land \neg(q \lor \neg q)$
Optimization problems

Examples:

- **Closest pair**
 Given a set of ordered pairs, points on a Cartesian plane, find two points that are closest together

- **Shortest path**: For vertices u, v, in weighted graph G, find shortest path from u to v

- **Bin packing**: Find a packing that minimizes the number of bins

Single-source shortest path

- In any weighted graph, from any source vertex, a tree exists composed of the set of shortest paths from the source to each other vertex

- The problem of a single shortest path reduces to building this tree (which is *not* the MST)

- *Dijkstra’s algorithm* builds this tree of shortest paths, starting from the source vertex
A shortest path’s subpaths are minimal

- Optimal-substructure property applies to shortest-path problem as follows
- If path \((u, ..., u', ..., v', ..., v)\) is minimal, then \((u', v')\) is minimal too (why?)
- So to minimize path \(u..v\), find shorter segments \(u'..v'\)

\[\begin{tikzpicture}
\node (u) at (0,0) {u};
\node (u') at (1,0) {u'};
\node (v) at (2,0) {v};
\node (v') at (1,0) {v'};
\draw (u) -- (u');
\draw (u') -- (v');
\draw (v') -- (v);
\end{tikzpicture}\]

- Note: more than one shortest path may connect two given vertices

The function-optimization problem

- Let \(f : \mathbb{N}^k \rightarrow \mathbb{R}\) for some \(k\) (the arity of \(f\))
- **Problem**: Find some \(x \in \mathbb{N}^k\) s.t. \(f(x)\) is maximal
- **Example**: Suppose \(x\) is the set of proportions of ingredients in a fuel mixture, \(f(x)\) is fuel efficiency under this mixture
- **Optimizing** \(f(x)\) means finding the most efficient mixture
- For an *algorithm* to optimize a function we must have \(f : X \rightarrow Y\) with \(X, Y\) finite
2. State-space search

Subtopic outcome

2.1 Explain what constraint and optimization problems are

2. Goal-driven search

• What are some of your goals?
• How do you pursue them?
Goal-based problems

- **Goal**: the set of environment states in which the goal condition is satisfied
- Reaching a goal state may consist of following a series of *transitions* between states
- **State-space search by goal-driven agents**: a search for a *path* consisting of edges in the state-transition graph from start state to a goal
- **Optimizing search** compares costs of paths in weighted graph

State-space search

- **State space**: A set of possible arrangements of values, e.g.:
 - Board configurations in board games
 - Paths in a graph
 - Arrangements of items in a knapsack
 - Assignments of truth values in a formula
- **Search** may be accomplished by *transitions* from state to state, which we can express as a *tree*
- **Strategy**: Reduce size of the state-space tree explored by the algorithm, by pruning branches that cannot lead to a solution
Search problems and solutions

• **Problem:**
 – Initial state
 – Set of actions
 – Goal test function (defines set of goal states)
 – Path cost

• **Solution:** path from initial state to goal state

• **Planning** is defining a sequence of actions to achieve a goal

• **Algorithm evaluation criteria:** Completeness; optimality; time and space complexity

Planning

• **Classical planning environments:** fully observable, deterministic, finite state, discrete

• Much planning relies on partial decomposition of problems

• Actions occur when preconditions are met

• **Plan construction** consists of search in space of possible actions for such a sequence

• **Challenge:** the frame problem, which consists of deciding what exactly are the changes in the situation caused by an action
Examples of state-space search

- *Tic-tac-toe*: goal is a state with three of player’s symbols in a row, column, or diagonal
- *8-puzzle* (tiles move left, right, up, down in an 8 x 8 square): goal is some ordering of tiles
- *Hamiltonian path problem*: goal is a path through all vertices of a graph back to start
- *Traveling salesperson* problem: goal is a minimum such path
- *Chess*: goal is checkmate by player

State-space search example

- *8-puzzle*, where state space is the possible arrangements of tiles, numbered from 1 to 8, in a 3 x 3 grid, leaving one space empty
- Goal is to move one tile at a time into the empty space, reaching goal state from start state, such as ascending numerals from
State-space search strategies

- **Data-driven** (forward chaining): apply rules to facts to generate new facts, seeking a path to goal
- **Goal-driven** (backward chaining): work backward from goal through subgoals to original facts
- **Generate and test:**
 - Design a test of proposed solutions and a generator of possible solutions
 - While \((-problem-solved \land \neg time-expired)\)
 - generate a possible solution
 - test it

Uninformed search

- We may represent state spaces as graphs, with transition rules for going from state to state
- Uninformed search is blind, as opposed to heuristic or informed search
- **Depth-first search:** deep, searching one full path first
- **Breadth-first search:** shallow, searching one-step paths first
- **Depth-limited (DLS):** modification of DFS
Depth-first search of graph

\[\text{GDFS}(G) \]
\[G = (V, E) \]
\[> \text{Pre: there is a vertex } v \text{ in } V \text{ s.t. } \text{Mark}[v] = 0 \]
\[\text{count} \leftarrow 0 \]
\[\text{for each vertex } v \in V \text{ do} \]
\[\text{if Mark}(v) = 0 \]
\[\quad \text{vdfs}(v, \text{count}) \]
\[\text{return Mark} \]
\[> \text{Post: Vertices are marked in order of} \]
\[> \text{some DFS traversal} \]

Depth-first search from vertex

\[\text{vdfs}(v, V) \]
\[\text{// recursive} \]
\[\text{count} \leftarrow \text{count} + 1 \]
\[\text{Mark}[v] \leftarrow \text{count} \]
\[\text{For each vertex } w \in V \text{ adjacent to } v \text{ do} \]
\[\text{if Mark}[w] = 0 \]
\[\quad \text{vdfs}(w, V) \]
\[> \text{Post: } v \text{'s mark is set} \]

Label each vertex with a number in order visited, exhausting one path before backtracking to new edge.
Breadth-first search

- Checks all vertices 1 edge from origin, then 2 edges, then 3, etc., to find path to destination
- If $G = \langle \{a..i\}, (a,b), (a,c), (a,d), (c,d), (b,e), (b,f), (c,g), (g,h), (g,i), (h,i) \rangle$, and
 - BFS input is G, a, f, then
 - Order of search is $(a,b), (a,c), (a,d), (b,e), (b,f)$

Breadth-first search

$\text{BFS}(G) \quad G = (V, E)$

\begin{align*}
\text{count} & \leftarrow 0 \\
\text{for each vertex} \; v \in V \; \text{do} & \\
\quad & \text{if Mark}(v) = 0 \\
\quad & \quad \text{bfs}(v) \\
\text{bfs}(v) & \\
\text{count} & \leftarrow \text{count} + 1 \\
\text{Mark} \; (v) & \leftarrow \text{count} \\
\text{Queue} & \leftarrow (v) \\
\text{While not empty(queue)} & \text{do} \\
\quad & \text{For each vertex} \; w \in V \; \text{adjacent to} \; \text{front(queue)} \; \text{do} \\
\quad & \quad \text{if Mark}(w) = 0 \\
\quad & \quad \quad \text{count} \leftarrow \text{count} + 1 \\
\quad & \quad \quad \text{append} \; w \; \text{to} \; \text{queue} \\
\quad & \text{Remove front of} \; \text{queue} \\
\end{align*}
2. State-space search

Subtopic outcome

2.2a Explain goal-based state-space search*

2.2b Perform a goal-driven analysis of a problem with a game tree*

3. Exhaustive search and intractability

- What is the set of all possible solutions to a planning problem like?
- How big is this set for two-step planning solutions? n-step?
Algorithm analysis

• **Analysis**: separation into components
• Form of running-time analysis for algorithm α, with running time that is big-O or big-Θ (theta) of f, where f is a function of the size of α’s input:
 $$T_\alpha(n) = O(f(n))$$
• **Examples:**
 - $T_{\text{Array-append}}(n) = \Theta(1)$
 - $T_{\text{Linear-search}}(n) = \Theta(n)$
 … because appending a new element to an array takes constant time and linear search takes time proportional to the array size

Loops and complexity

• A single loop of n iterations, where each iteration executes $O(1)$ steps, is $O(n)$
• A loop nested to two levels, each with roughly n iterations, where each iteration executes $O(1)$ steps, is $O(n^2)$
• If we start with n items to look at and cut our remaining work in half at each step, then the job will take $O(\log_2 n)$ such steps.
• If our loops are nested to n levels, as in password guessing, then algorithm is $O(2^n)$ — offer job to someone else
Slower part of an algorithm dominates its running time

- **Theorem:**
 \[(\forall n) \ T_1(n) \in O(g_1(n)) \land T_2(n) \in O(g_2(n)) \Rightarrow \]
 \[T_1(n) + T_2(n) \in O(\max\{g_1(n), g_2(n)\}) \]

- **Discussion:** The times of two steps of an algorithm, added together, grow as the order of the slower (maximum-time) part

- **Example:** Algorithm that checks for duplicates in an array by bubble-sorting then checking consecutive elements, is \(O(n^2) \)

Intractable problems

- Some problems have no known *polynomial time* \(O(n^k) \) solutions for any constant \(k \)

- These are considered *intractable* because for sufficient \(n \) they may take “forever” in practice (note this differs from Levitin definition)

- Exponential-time examples: Hanoi, password guessing, understanding English

- Others are called *NP-complete* problems: solutions are checkable, but not known to be obtainable, in polynomial time
Hard computational problems

- We may analyze the complexity of *problems*, as opposed to *algorithms*
- Complexity of a problem is complexity of the most efficient algorithm that solves it
- We prove complexity of hard problems by *reducing* a hard problem of known complexity to a problem of unknown complexity
- Problems may be categorized as *tractable* (P, polynomial-time) or *intractable* (NP-hard)

Multiplication rule

- Suppose an operation has k steps
- Suppose steps 1 .. k have n_1, … n_k ways to be performed
- Then there are $\prod_{i=1}^{k} (n_i)$ ways to perform the operation
- From this it follows that there are $O(2^k)$ ways to perform it
Combinatorial explosion

- Suppose we want to choose the best \(n \) things to buy or do, of \(k \) choices, or the best plan, with \(n \) steps and \(k \) options at each step, to accomplish something.
- Then the space of plans is of \(k^n \) size; this is the number of overall choices to consider.
- **Combinatorial explosion:** as \(n \) goes to 100 (i.e., state space goes to \(2^{100} \)), no computer could consider all possibilities.

Satisfiability (SAT)

- Given a formula \(\phi \) in propositional logic (logic with \(\neg, \land, \lor, \Rightarrow \), no predicates, no quantifiers), does a set of variable assignments exist that satisfies \(\phi \) (makes \(\phi \) true)?
- **Examples:**
 1. \(p \land q \land r \)
 2. \((p \land q) \lor \neg q \)
 3. \(p \land \neg (q \lor \neg q) \)
Polynomial time complexity

- \(P = \bigcup_{k \in \mathbb{N}} \text{DTIME}(n^k) \)

- That is, \(P \) is the set of problems decidable in \(O(n^k) \) time (polynomial time), where \(n \) is the size of the problem and \(k \) is a constant.

- **Examples of problems in class \(P \)**
 - Searching a collection is in \(\text{DTIME}(n) \)
 - Sorting an array, \(O(n \log n) \)
 - Searching a BST, \(O(\log n) \)
 - Generating a graph reachability matrix, \(O(n^3) \)

Exponential time

- \(\text{EXPTIME} = \text{DTIME}(2^n) \)

- \(SAT \) seems to be in \(\text{EXPTIME} \) but not \(P \), because it seems that \(O(2^n) \) candidate solutions need to be generated and tested.
The \textit{NP} complexity class

- $\text{NP} = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k)$
- That is, \text{NP} is the set of problems decidable in polynomial time by nondeterministic algorithms
- \textit{Intuition:} \text{NP} problems are those for which a particular candidate solution, once found, can be verified in polynomial time
- \textit{Question:} Is $P = \text{NP}$?

\textit{NP} completeness

- For many problems in \text{NP}, e.g., SAT, no polynomial time solution is known
- Problems to which SAT or similar problems are reducible are called \textit{NP-complete}
- \textit{Example:} Traveling Salesperson
- If any of these has a polynomial-time solution, then all do, hence $P = \text{NP}$
- Most researchers think $P \neq \text{NP}$, i.e., \text{NP}-complete problems are believed to be exponential-time
SAT, NPC, and $P = \text{NP}$

- **Theorem (Cook):** Every problem in NP is reducible to SAT
- **Proof:** Construct a nondeterministic program that decides the problem, convert its computation steps to a CNF formula

 [Explain]

- **Theorem:** $P = \text{NP}$ iff $\text{SAT} \in P$

Intractability, NPC, EXPTIME

- Certain problems are thought or known to have only exponential-time, $O(2^n)$, solutions
- *EXPTIME* and *NPC* are the *NP-hard* problems, considered *intractable*
- Problems of planning, scheduling, routing, drawing inferences, understanding language, etc., are in general intractable
- **What to do:** Replace intractable problem with a simpler one, e.g., one with a probabilistic or approximate solution
2.3 Apply the definition of intractability to a computational problem

4. Heuristics

- What do you do when you plan?
- Do you consider every contingency?
- How can you please everyone?
Heuristics

- **Definition:** rules that guide a system to choices in a state-space search that are likely to lead to a satisfactory solution in acceptable time

- **Necessary if:**
 - Problem lacks exact solution due to ambiguity of problem statement or data, or lack of information
 - Problem is intractable; solution may encounter combinatorial explosion requiring exponential time to solve

Game theory

- Originated in economic theory
 - Mathematical methods for study of decisions
 - Includes notion of *rational* behavior (acting in own interests)
 - Includes notion of *utility*
 - Generalizes the notion of game strategy

- Variants (Von Neumann-Morgenstern, 1947):
 - zero-sum, non-zero-sum
 - 2-player, multi-player
 - perfect-information, imperfect-information
Adversarial search

- Some games are two-player, turn-taking, zero-sum, deterministic, with perfect-information
- Early AI research addressed such games because they are simple to represent, hard to solve
- Minimax algorithm implements DFS assuming optimal opponent move
- Alpha-beta pruning effectively reduces branching factor to its square root
- Cutoff tests evaluate positions enable rational choices without looking ahead to end of game

Example: Playing a game

- To choose a move by Generate-and-test:
 - Generate possible moves
 - Test them with an evaluation (utility) function, e.g., allocating points for pieces won by the move
 - Finding good moves often entails lookahead and backtrack in the game tree
The minimax algorithm

- Used for problems with an adversary; e.g., two-player games
- Assuming an optimal opponent, let the best move be the one that would yield the best-valued situation if the opponent replies with his/her best move
- To determine that, apply the same algorithm from opponent’s viewpoints

Example: Tic-tac-toe

- State space: the set of all possible board positions
- Let a position’s value be 1.0 if we win, 0.0 if we lose
- Also, if we can force a win (as at right), value is 1.0
2. State-space search

Game trees

- In a game tree, vertices are board positions
- Edges are possible moves (transitions between board positions)

Heuristics in chess

- Example: value of Queen is 9, rook 5, bishop 3, knight 3, pawn 1
- Seek to force checkmate if possible in a few moves
- Checkmate: a state in which opponent’s king is threatened, with no escape
Informed search with heuristic

- *Greedy best-first* using state-evaluation function to decide which is believed best
- *Evaluation function* h is called a heuristic and is based on domain knowledge
- $h(v)$ is estimated cost of least-cost path from node v to a goal node
- *A* search: estimates cost to reach goal through node v as sum of cost to reach v and heuristic cost to reach goal from v
- *Theorem*: A* is optimal if $h(v)$ is admissible, i.e., never overestimates cost

Triangle inequality

- Suppose we wish to go from state A to state B
- Then it is useful to know that for state C, $\text{cost}(A, B) \leq \text{cost}(A, C) + \text{cost}(C, B)$
- If we can get from A to C and from C to B for a total cost x, then the cost from A to B can be no greater than x
- *Intuition*: No two sides of a triangle can sum to more than the length of the third
Partially informed search

- If environment is partially observable, or effects of actions are uncertain, then agent must act on *contingencies* provided by new percepts
- *Exploration* may be required; i.e., actions that generate useful percepts
- *Belief states* are sets of states of the environment

```plaintext
Backtrack (X [1 .. i])
If X [1 .. i] is a solution
    return X [1 .. i]
else
    for each state q in next(X [1 .. i])
        X [i + 1] \leftarrow q
    return Backtrack (X [1 .. i + 1])
Return fail
```

- How does this differ from depth-first search?
- Why does recursive call have *larger* parameter than original parameter?
Tree search algorithm

\[\text{path} \leftarrow \lambda. \]
\[\text{do} \]
\[\text{if cannot expand any node} \quad \text{return FAIL} \]
\[v \leftarrow \text{node in tree chosen for expansion} \]
\[\text{if } v \text{ contains goal state} \]
\[\quad \text{return } \text{path} + v \]
\[\text{else} \quad \text{expand } v \]

• Nodes contain state, parent, action, path cost, depth
• Nodes available to expand are those on fringe of expanding tree

Iterative improvement

• \textit{Problem class}: Optimization under constraints
• \textit{Strategy}: Find a \textit{feasible} solution, improve it by successive steps
• \textit{Obstacle}: \textit{Global} maxima/minima (the objective) may differ from \textit{local} ones
• \textit{Cases}:
 – Simplex method for linear programming
 – Maximal flow
 – Maximal bipartite matching
 – Stable marriage
 – Hill climbing
Iterated local search (hill climbing)

Search (S)

\[
\text{repeat} \\
\quad c \leftarrow \text{random (S)} \\
\text{repeat} \\
\quad \text{changed} \leftarrow \text{false} \\
\quad \text{for each } t \in T \\
\quad \quad c' \leftarrow t(c) \\
\quad \quad \text{if eval}(c') > \text{eval}(c) \\
\quad \quad \quad c \leftarrow c' \\
\quad \quad \quad \text{changed} \leftarrow \text{true} \\
\text{until } \neg \text{changed} \\
\text{return } c
\]

- Explores search space \(S \) using randomization, transformation set \(T \), and fitness function \(\text{eval} \)
- Addresses \(n \)-queens, TSP, SAT
- Similar algorithm, simulated annealing, solves independent-set problem

Simulated annealing and local beam search

- *Simulated annealing*: random choice is used to “shake up” the state transitions out of local optima
- *The intensity of shaking*-up is progressively reduced (analogous to lowering of temperature in metal annealing)
- *Beam search* uses a population of states, choosing the best performers for re-generation
2. State-space search

Knowledge, goals, and rationality

• Levels of a computer system: device, circuit, symbol, … knowledge (Newell, 1982)
• Knowledge: Whatever an agent has that enables it to compute its actions so as to reach goal
• Principle of rationality: An agent will select an action if it has knowledge that the action will lead to a system goal

Bounded rationality

• Notion suggested by Herbert Simon, 1972, as alternative to classical rationality assumption of economic theory
• Argument: Humans have limited knowledge and resources for decision making
• Alternative goal to optimality: satisficing (good enough)
• Rational agent: one that chooses actions that yield maximum expected reward averaged over all outcomes
Aspects of heuristics

- **Limitations:** simple games are ideal for heuristics because
 - Representation is simple
 - All nodes have common representation
- Note that inference systems use heuristics as data; e.g., “people with savings and income should invest in stocks”
- **Confidence levels** for inference are heuristics

Subtopic outcome

2.4 Explain how heuristics are used to provide adequate solutions to hard search problems*
Summary

• We solve problems by searching a space of possible solutions
• The size of these state spaces is often exponential in the size of the data involved
• This makes most state-space search very hard
• We address this difficulty with rules of thumb based on experience

References
