4. Divide and conquer

1. Very fast algorithms
2. Vector problem solutions
3. Tree-based algorithms
4. Graph algorithms

Inquiry

- What is the common feature in the design of the
 - binary search
 - BST, and
 - heap?
- How tall is a tree?
Classroom exercise

• **Given:**
 – Nine (12; 16) small objects that look the same
 – All, being the same weight except one
• Using a *balance scale*, how many weighings does it take (minimum) to find the one that’s different?
• Solve as teams; report back

Topic objective

Explain the divide-and-conquer approach and apply it to a variety of algorithm-design problems, giving the appropriate time analysis for each.
1. Very fast algorithms

• What is a good strategy for finding a word in a paper dictionary?

• How long does a Google search take?
Subtopic objectives

4.1 Relate logarithmic time to very fast algorithms*
A fast numeric algorithm

- Consider finding the logarithm of n:
 \[
 \log_b(n) = \begin{cases}
 0 & \text{if } n = 1 \\
 1 + \log_b(n/b) & \text{otherwise}
 \end{cases}
 \]

- *Iteratively*:
 \[
 y \leftarrow 0 \\
 \text{while } n > 0 \\
 \quad n \leftarrow n / b \\
 \quad y \leftarrow y + 1
 \]

- What is the running time of \log?

A way to describe binary search

- if middle element of a sorted array
 matches key, return true

- Otherwise, search the left or right half,
 depending on whether the middle element
 is greater than or less than the key

- How many times is a middle element
 checked, followed by a search of the left or
 half of the remaining array?
Decision trees for search

- The *decision tree* for a search of an array must examine each element.
- Searching an *unsorted* array, only one element is considered per step.
- Hence the tree depth (running time) is $O(n)$.
- Searching a *sorted* array, inspecting the middle element enables a decision to search only the right or left half of the array.
- Hence the decision tree depth is $O(\lg n)$.

Divide and conquer

- Break problem into *base* and *recursive* cases.
- We “conquer” by defining the recursive case as a simpler version of the original problem.
- *Examples:*
 - binary search
 - Quicksort
 - BST search, traversal
 - Mergesort
 - Heapsort
 - convex hull
 - closest pair
 - searches of graphs
 - topological sort
 - order statistic
 - matrix multiplication
Binary-search *(A, first, last)*

if `first > last`
// (i.e., nothing to search)
return false
otherwise

```
middle ← (first + last) ÷ 2
if A[middle] matches key
    return true
otherwise
    if A[middle] > key
        return Bin-search(A, first, middle − 1, key)
    otherwise
        return Bin-search(A, middle + 1, last, key)
```  
> Post: returns true iff `key` is in A [first...last]

Binary-search recurrences

\[
\text{Bin-srch}(A, x) = \begin{cases}
\text{false} & \text{if } |A| = 0 \\
\text{true} & \text{if } A\lfloor|A| ÷ 2\rfloor = x \\
\text{Bin-srch}(A[0..\lfloor|A| ÷ 2\rfloor]) & \text{if } A\lfloor|A| ÷ 2\rfloor > x \\
\text{Bin-srch}(A\lfloor|A| ÷ 2\rfloor+1..|A|) & \text{otherwise}
\end{cases}
\]

- Recursive call examines at most half the remaining elements
- Recurrence Solution:

\[
T_{\text{Bin-srch}}(n) = \Theta(\log_2 n) = \Theta(\lg n)
\]
Divide-and-conquer strategy

- Definition of divide and conquer: an algorithm in which
 - Problem is broken into parts
 - Each part is solved recursively
 - Partial solutions are combined into an overall solution

Solving recurrences: logarithmic time

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
\Theta(1) + T(n/2) & \text{otherwise}
\end{cases}
\]

Solution: \(\Theta(\lg n) \), because at each of \((n/2)\) recursive steps the remaining time is cut in half

Example: Binary search
Russian peasants’ algorithm (aka Al-Kwarizmi’s)

Product \((a, b)\)

\[
\text{result} \leftarrow 0 \\
\text{while } a > 0 \\
\quad \text{if } a \text{ is odd} \\
\quad \quad \text{add } b \text{ to result} \\
\quad a \leftarrow \left\lfloor a \div 2 \right\rfloor \\
\quad b \leftarrow \text{Product}(b, 2) \\
\text{Return } \text{result}
\]

Example: \(13 \times 5 = 65\)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(\text{product})</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>65</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Recurrence for Product

\[
\text{Product}(a, b) = \begin{cases}
\text{false} & \text{if } b = 0 \\
2 \text{ Product}(a, b/2) & \text{if } b \text{ even} \\
a + 2 \text{ Product}(a, \lfloor b/2 \rfloor) & \text{otherwise}
\end{cases}
\]

- Time recurrence:
\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 0 \\
\Theta(1) + T_{\text{Product}}(n/2) & \text{otherwise}
\end{cases}
\]
- Where \(n\) is size of representation of \(a, b\)
Exponential and logarithmic functions

• Many processes of growth and decay are described by exponential and logarithmic functions
• Function \(\log_b(x) \) is the inverse of function \(b^x \)
• These functions grow extremely slowly and extremely quickly, respectively
• These functions grow proportional to the base; i.e., the big-O analysis is independent of base

Logarithms and running time

• In algorithm analysis, we can ignore the base of a logarithm because \(\log_b n \) is proportional to \(\log_c n \) for all constants \(b \) and \(c \)
• Thus, \(\Theta(\lg n) = \Theta(\log_2 n) = \Theta(\log_b n) \) for any base \(b \)
• Logarithmic complexity is desirable because the log function grows slowly
Decrease by constant factor

- Looking for solutions where
 \[T(n) = T(n/b) + f(n) \]
- If \(T(n) = T(n/2) + f(n) \), then depth of recursion is \(\log_2 n \)
- Examples:
 - Binary search, where \(f(n) = 1 \), hence solution is \(O(\lg n) \)
 - Quicksort, where \(f(n) = n \), hence solution is \(O(n \lg n) \)

Master Theorem ("Main Recurrence Theorem")

- Let \(T(n) = aT(\lfloor n/b \rfloor) + f(n) \)
- Let \(f(n) \in \theta(n^d), d \geq 0 \)
- Then \(T(n) \in \)
 - \(\theta(n^d) \), if \(a < b^d \)
 - \(\theta(n^d \lg n) \), if \(a = b^d \)
 - \(\theta(n \log_b a) \), if \(a > b^d \)
- This theorem simplifies solving some recurrence equations for divide-and-conquer algorithms
- Example: Binary search
Applying the Master Theorem

- Let \(T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d) \)
- Then by Master Thm., \(T(n) \in \Theta(n^d \lg n), \text{ if } a = b^d \)
- Examples:
 - (Binary search) \(T(n) = T(n/2) + O(1) \), so \(a = 1, b = 2, d = 0 \), hence \(a = b^d, f(n) = 1 \), hence \(T(n) \in \Theta(\lg n) \)
 - (Quicksort) \(T(n) = 2T(n/2) + O(n) \), so \(a = 2, b = 2, d = 1 \), hence \(a = b^d \)
- Master Theorem does not apply to linear search, quadratic sorts, or exponential-time algorithms

2. Vector problem solutions

- What do the binary search, Quicksort, merge, and merge sort algorithms have in common?
4. Divide and conquer

Subtopic objectives

4.2a Write a divide-and-conquer algorithm*

4.2b Write a recurrence for a divide-and-conquer algorithm*

4.2c Write and solve a time recurrence for a divide-and-conquer algorithm*

QuickSort(A)

If |A| > 1

\[(A, pvloc) \leftarrow Partition(A)\]

\[QuickSort(A[1.. pvloc - 1])\]

\[QuickSort(A[pvloc + 1 .. |A|])\]

Return A

- *Partition* rearranges A so that all elements less than A[pvloc] are to its left, and all elements greater are to its right
- Recursive calls sort arrays half as large at each recursive step
Quicksort top-down strategy

Unsorted

Partitioned

Partitioned

Sorted sequences of \leq 3

- **Time:** \(n \log_2 n \) because number of partition steps is \(\log_2 n \)

Partition code

Partitions subarray `num[first..last]`, returns index of pivot value

```c
int partition(int num[], int first, int last)
{
    int pivot = num[first];
    int left = first + 1, right = last;
    do {
        while (left <= right && num[left] <= pivot)
            ++left;
        while (left <= right && num[right] > pivot)
            --right;
        if (left < right)
            swap (num[left], num[right]);
    } while (left < = right);
    swap (num[first], num[right]);
    return right;
}
```
Correctness of Quicksort

- **To prove:** For all i and j less than the size of array A, $i < j$ implies $A[i] \leq A[j]$
- **Base step:** Property to be proven holds vacuously for array of size 1, since $i = j$
- **Induction step (summary):** This step must show that if Quicksort leaves each pair of array elements in correct order for all arrays of size n, then the same is true for all arrays of size $(n + 1)$.
- Our argument uses the fact that each partition is of size n or smaller, so each gets sorted

Quicksort recurrences

\[
\text{Qsort}(A) = \begin{cases}
A & \text{if } |A| \leq 1 \\
\text{Qsort}(\text{Right-partition}(A, A[1])) & \text{otherwise}
\end{cases}
\]

\[
\text{Left-partition}(A, x) = \begin{cases}
\lambda & \text{if } A = \lambda \\
\text{Left-partition}(A[2..|A|], x) + A[1] & \text{otherwise}
\end{cases}
\]

\text{Right-partition mirrors Left-partition}
The partition step

1. **pivot**

 \[
 \begin{array}{cccccccc}
 5 & 1 & 7 & 10 & 2 & 4 & 8 & 11 & 3 & 6 \\
 \end{array}
 \]

 Repeatedly finds leftmost element in left partition that should be in right and rightmost that should be in left, swaps them

2. **pivot**

 \[
 \begin{array}{cccccccc}
 5 & 1 & 3 & 4 & 2 & 10 & 8 & 11 & 7 & 6 \\
 \end{array}
 \]

3. **pivot**

 \[
 \begin{array}{cccccccc}
 2 & 1 & 3 & 4 & 5 & 10 & 8 & 11 & 7 & 6 \\
 \end{array}
 \]

 to partition

Here, 3 swaps with 7, 10 swaps with 4, and pivot 5 swaps into place

Complexity of Quicksort (avg. case)

\[
T_{\text{Quick}}(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
O(n) + 2T_{\text{Quick}}(\lceil (n - 1) / 2 \rceil) & \text{otherwise}
\end{cases}
\]

- There are \((\lg n)\) levels of recursion (average case) because \((n - 1)\) is repeatedly divided by 2
- There are \(n\) steps at each level of recursion to perform partition
- We can toss out term 1 and factor 2
- Solution: \(T(n) = O(n \lg n)\)
- This is *much* better than \(O(n^2)\)
How Quicksort uses divide and conquer

• Sorting problem is divided into
 – partition
 – recursively sort left half
 – recursively sort right half
• Two sorted versions of half the array each are concatenated together into a sorted version of the entire array

Merging two sorted arrays

Repeat until A and B are exhausted:
 Append the lesser of \{A_{ai}, B_{bi}\} to C, incrementing the indexes \(ai, bi,\) and \(ci\) as appropriate

• \(C\) should be as large as \(A, B,\) together
Intuition for merge

To merge two sorted arrays:

- Return the lower of the two first elements, plus a merge between the rest of that array and the entire other array

Merge algorithm

A and B are sorted arrays; Merge returns a sorted array containing all elements of A, B

$\text{Merge}(A, B) =$

\[
\begin{cases}
 A & \text{if } B = \lambda \\
 B & \text{if } A = \lambda \\
 B[1] + \text{Merge}(A, B[2..|B|]) & \text{otherwise}
\end{cases}
\]

Spec: If A, B are each sorted arrays, then $\text{Merge}(A, B)$ is a sorted array

Problem: Write $T_{\text{Merge}}(n)$ recurrence
Mergesort

Recursively divide array in two, sort each half, merge the results

\[
\text{Mergesort}(A) \\
\text{If } |A| \leq 1 \\
\quad \text{return } A \\
\text{else} \\
\quad \text{return Merge(Mergesort(A [1 .. |A| / 2]), Mergesort(A [|A| / 2 +1.. |A|]))}
\]

Problem: Write \(T_{\text{Mergesort}}(n) \) recurrence
Mergesort exercise

• Take 7 or 15 students to sort array of 7 or 15 cards
• One student divides the deck in two and gives each half to two others
• Each does the same, each recipient does same
• When two students get 0 or one card each, they merge them and pass back
• Each student who gets back two piles merges them

Order statistics

• Problem: Find kth-highest value in an unsorted list; e.g., median is order statistic where $k = \lceil n / 2 \rceil$

• Brute-force solution (equivalent to sorting then finding $A[k]$):

 Kth-highest $(A, k) = \begin{cases}
 A[1] & \text{if } k = 1 \text{ and } \text{size}(A) = 1 \\
 \text{min-elt}(A) & \text{if } \text{size}(A) = k \\
 Kth$-highest $(A - \text{min-elt}(A), k - 1) & \text{otherwise}
 \end{cases}$
Divide-and-conquer order statistic algorithm

- Partition array A, finding pivot position p
- If $p = k$, return $A[p]$
- If $p < k$, recurse to find $(k-p)$th order statistic of right partition, otherwise recurse for left partition
- Average-case analysis: $T_{Ordstat}(n) = T_{Ostat}(n/2) + T_{Ostat}(n/4) + T_{Ostat}(n/8) \ldots$
- $\ldots = \Theta(n)$

Order statistic recurrence

\[
OS(k, A) =
\begin{cases}
A[pivloc(A)] & \text{if } k = pivloc(A) \\
OS(pivloc(A) - k, A[1..pivloc(A)-1]) & \text{if } k < pivloc(A) \\
OS(k - pivloc(A), A[pivloc(A)+1, |A|]) & \text{otherwise}
\end{cases}
\]

Pivloc is computed by using the Partition from Quicksort
Convex hull problem

- The Convex hull of a set of points is a subset of ordered pairs (on a Cartesian plane) that define a polygon with no concave series of edges ("dents")
- Intuition: convex hull are locations of the posts of the shortest fence that would enclose all the points
- I.e., find smallest convex polygon that contains all of a set of points

Convex hull divide-and-conquer solution

- Find leftmost and rightmost points in set, \(P_1 \) and \(P_2 \) (these are in the convex hull)
- Define upper and lower areas as separated by the line segment \((P_1, P_2) \)
- In each area, find farthest point from segment, recursively find triangles defined by farthest points -- EXPLAIN
- Combine upper and lower hulls
- Average case: \(T(n) = \theta(n \ lg \ n) \), worst: \(\theta(n^2) \)
Closest pair (of a set of points)

- **Given a set of ordered pairs (points on a Cartesian plane) find the two points that are closest together.**
- **Algorithm:**
 1. Divide set into two vertical areas
 2. Find closest pair in each
 3. Choose closest of these two
 4. See if any pairs crossing boundary are closer

- \(T(n) = 2T(n/2) + M(n) \), where \(M(n) \) is time to merge the solutions to subproblems
- \(T(n) \in \Theta(n \lg n) \)
- Brute force approach yields \(\Theta(n^2) \)

Counting inversions for string distances

- Count inversions in left, right halves
- Sort left and right halves
- Recurse for each half of a half
- Similar to *Merge-Sort* but also counts inversions along the way
- **Time:** \(O(n \lg n) \)
3. Tree-based algorithms

- What is it about trees that makes them useful for performance in binary search trees and heaps?
- Can you describe the inorder, preorder, and postorder tree traversals?
Some algorithms with trees

- *Tree construction* (from array)
- *Tree traversals*: Recursively visit subtrees until subtrees are leaves
- *Binary search tree search*: Makes use of BST ordering property and average height of binary tree
- *Heap algorithms*: Make use of height of complete binary tree

Building a tree

- *Example*: expression tree
- *Input*: arithmetic expression
- *Output*: tree, with literals and leaves, operations as internal nodes
Inorder traversal

Inorder traversal (node, op)
1. If node has left child
 Inorder-traverse (Left(node), op)
2. Apply operation op to node
3. If node has right child
 Inorder-traverse (Right(node), op)

• Order for tree above: 1, 3, 5, 6, 7
• Application: Display BST in ascending order

Preorder traversal

A node is operated on as soon as it is first visited.

Preorder-traverse (node, op)
1. Apply operation op to node
2. If node has left child
 Preorder-traverse (Left(node), op)
3. If node has right child
 Preorder-traverse (Right(node), op)

• Order for tree above: 3, 1, 6, 5, 7
• Application: Copy tree
Postorder traversal

A node is operated on after its descendants

Postorder-traverse \((node, op)\)

1. If \(node\) has left child

 \(Postorder\)-traverse \((Left(node), op)\)

2. If \(node\) has right child

 \(Postorder\)-traverse \((Right(node), op)\)

3. Apply operation \(op\) to \(node\)

- Order for tree above: 1, 5, 7, 6, 3
- Application: Deallocate tree

BST search of a subtree

\(BST\)-search \((root, key)\)

- If \(root\) is null, return \(false\)
- If \(root\)’s data matches \(key\)

 return \(true\)
- Otherwise

 if \(root\)’s data > \(key\)

 return \(BST\)-search \((left (root), key)\))

 otherwise

 return \(BST\)-search \((right (root), key)\))

- Initial value of \(root\) is root of entire tree
Complexity of BST-search

\[T_{Srch}(n) = \begin{cases} \Theta(1) & \text{if } n < 2 \\ \Theta(1) + T_{Srch}(n/2) & \text{otherwise} \end{cases} = \Theta(\log n) \]

- What are the assumptions of the above?
- Does it apply to best, worst, average cases?
- Compare with binary search
- How does BST-insert compare?

A heap is a kind of complete binary tree

- Solves priority queue problem efficiently
- A complete binary tree has all levels full except possibly the bottom one, which is filled from the left
- Which are complete binary trees?
Array implementation of complete binary tree

- Root is $A[1]$
- Parent of $A[i]$ is $A[\lfloor i / 2 \rfloor]$ $A[(i-1)/2]$
- If n is size, height is $\lceil \log_2 n \rceil$

Java

```
A[0]  // Root
A[(i-1)/2]  // Parent
```

Height of a complete binary tree with n nodes is $O(\log_2 n)$

- …because size n approximately doubles with each level added
- Or, $2^{height-1} \leq n \leq 2^{height} - 1$
A maximum heap

- Heap property: for all i up to array size, $A[i] \leq A[i/2]$

```
[10 8 9 4 7 5 2 2 3 1]
```

- The **Heapify** operation
 - **Heapify**(A, i) applies to one node, with subscript i, of a complete binary tree stored in array A
 - It assumes that subtrees with roots **Left-child**(i) and **Right-child**(i) already have the heap property
 - Node $A[i]$ may meet or violate heap property
 - **Heapify**(A, i) causes the subtree with root subscript i to have the heap property
Intuition for **Heapify**

- The algorithm drags the value at a selected node down to its proper level where heap property applies to it.
- It does this by recursively exchanging the value in the root node with the higher-priority child of its two children.
- **Complexity**: Depth of complete binary tree with \(n \) nodes, i.e., \(\Theta(\lg n) \)

Heapify\((A,i)\) for minimum heap

\[
\begin{align*}
L & \leftarrow \text{Left}(i) \\
R & \leftarrow \text{Right}(i) \\
\text{If } L = \text{null} \text{ and } R = \text{null} \text{ then return} \\
\text{if } L \leq |A| \text{ and } A[L] < A[i] \\
& \quad \text{smallest} \leftarrow L \\
\text{else} \\
& \quad \text{smallest} \leftarrow i \\
\text{if } R \leq |A| \text{ and } A[R] < A[\text{smallest}] \\
& \quad \text{smallest} \leftarrow R \\
\text{if } \text{smallest} \neq i \\
& \quad \text{exchange } A[i] \text{ with } A[\text{smallest}] \\
\text{Heapify}(A, \text{smallest})
\end{align*}
\]

Precondition: Left\([i]\), Right\([i]\) are roots of heaps
To convert an array to a heap

Overview: Heapify at every non-leaf node, starting at the bottom

Build-heap(A)
for i ← ⌊|A| / 2⌋ down to 1
Heapify(A, i)

Use version for min or max heap

Because leaves don’t need to be heapified

[SHOW WHY]

Analysis: Θ(n lg n)

Extract value from heap

Extract-min(A)
If |A| < 1
 throw exception
min ← A[1]
|A| ← |A| – 1
Heapify(A, 1)
Return min

• Returns minimum value from a min-heap
• Deletes that value from heap
• Analysis: Θ(lg n)
4. Divide and conquer

Insertion into a min-heap

Heap-insert \((A, key)\)

\[
\begin{align*}
\text{Heap-size}(A) & \leftarrow \text{Heap-size}(A) + 1 \\
i & \leftarrow \text{Heap-size}(A) \\
\text{while } i > 1 \text{ and } A[\text{Parent}(i)] > key & \\
& \quad A[i] \leftarrow A[\text{Parent}(i)] \\
& \quad i \leftarrow \text{Parent}(i) \\
A[i] & \leftarrow key
\end{align*}
\]

Analysis: \(\Theta(\lg n)\)

because Parent[i] halves \(i\)

To sort an array using a max-heap

Heapsort \((A)\)

Build-heap \((A)\)

for \(i \leftarrow \text{length}(A)\) downto 2

exchange \(A[1]\) with \(A[i]\)

\[
\begin{align*}
\text{Heap-size}(A) & \leftarrow \text{Heap-size}(A) - 1 \\
\text{Heapify}(A,1)
\end{align*}
\]

Analysis: \(\Theta(n \lg n)\)

- **In plain language...**

 Repeatedly extract the highest value from heap and put it at front of a growing sorted array just after the heap
Terminology about heaps

<table>
<thead>
<tr>
<th>Johnsonbaugh-Schaefer</th>
<th>Cormen-Leiserson-Rivest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sift-down</td>
<td>Heapify</td>
</tr>
<tr>
<td>Heapify</td>
<td>Build-heap</td>
</tr>
<tr>
<td>Largest-delete</td>
<td>Extract-max</td>
</tr>
</tbody>
</table>

• Our reference is Cormen-Leiserson-Rivest
• Lesson: In computer science, law of frontier operates for terminology

Properties of binary trees

• Theorem: If T is a full binary tree with k nonleaves, then T has $(2k + 1)$ vertices and $(k + 1)$ leaves

• Theorem: If T is a binary tree of height h and with k leaves, then $k \leq 2^h$, i.e., $h \geq \log_2 k$

• Proofs: inductive
4. Divide and conquer

4. Graph algorithms

- How would you get to your destination on a trip, if you had a map but not GPS?

Subtopic objectives

4.4a Explain breadth-first or depth-first search
4.4b Describe directed acyclic graphs
Three problems

- **Depth-first search**: Label each vertex of graph with a number in order visited, using the strategy of exhausting one path before backtracking to start at a new edge.

- **Breadth-first search**: Label each vertex, using the strategy of visiting each vertex adjacent to the current one at each stage.

- **Topological sort of a dag** (2 versions)

Depth-first search of graph

\[\text{GDFS(G)} \]

\[G = (V, E) \]

> **Pre**: there is a vertex \(v \) in \(V \) s.t. \(\text{Mark}[v] = 0 \)

\[\text{count} \leftarrow 0 \]

for each vertex \(v \in V \) do

 if \(\text{Mark}(v) = 0 \)

 \[\text{vdfs}(v, \text{count}) \]

return \(\text{Mark} \)

> **Post**: Vertices are marked in order of some DFS traversal

Running time: \(\Theta(n) \)
Depth-first search from vertex

\[\text{vdfs}(v, V) \]
\[\text{count} \leftarrow \text{count} + 1 \]
\[\text{Mark}[v] \leftarrow \text{count} \]
For each vertex \(w \in V \) adjacent to \(v \) do
\[\text{if Mark}[w] = 0 \]
\[\text{vdfs}(w, V) \]
> Post: \(v \)'s mark is set

Challenge: show termination
[See URL found by B. Grozier]

Breadth-first search

- Checks all vertices 1 edge from origin, then 2 edges, then 3, etc., to find path to destination
- If \(G = \langle \{a..i\}, (a,b), (a,c), (a,d), (c,d), (b,e), (b,f), (c,g), (g,h), (g,i), (h,i) \rangle \), and
 - BFS input is \(G, a, f \), then
 - Order of search is (\(a,b \), (\(a,c \), (\(a,d \), (\(b,e \), (\(b,f \))

[pic]
Breadth-first search

BFS(G) \[G = (V, E) \]

Iterative

\[
\begin{align*}
\text{count} & \leftarrow 0 \\
\text{for each vertex } v \in V & \text{ do} \\
\quad & \text{if Mark}(v) = 0 \\
\quad & \quad \text{bfs}(v)
\end{align*}
\]

\[
\begin{align*}
\text{bfs}(v) & \\
\text{count} & \leftarrow \text{count} + 1 \\
\text{Mark}(v) & \leftarrow \text{count} \\
\text{Queue} & \leftarrow (v)
\end{align*}
\]

While not empty(\text{queue}) do

\[
\begin{align*}
\text{For each vertex } w \in V & \text{ adjacent to front}(\text{queue}) \text{ do} \\
\quad & \text{if Mark}(w) = 0 \\
\quad & \quad \text{count} \leftarrow \text{count} + 1 \\
\quad & \quad \text{append } w \text{ to } \text{queue} \\
\text{Remove front of } & \text{queue}
\end{align*}
\]

• Proceeds concentrically
• Uses queue rather than DFS’s stack
• See example (pic)

Counting connected components of a graph

• To see how many disjoint subgraphs \(G = (V, E) \) has:

\[
\begin{align*}
G' & \leftarrow G \\
\text{While } & G'.V \neq \emptyset \\
\text{Do a search on } & G, \text{ deleting vertices from } G'.V \text{ on the way} \\
\text{count} & \leftarrow \text{count} + 1
\end{align*}
\]
Bipartite graphs

• Definition: A graph $G = (V, E)$ is bipartite iff its vertices may be partitioned into independent sets $V_1, V_2 \subseteq V$ s.t. $(\forall (x,y) \in E) x \in V_1$ and $y \in V_2$

• One algorithm to determine if a graph is bipartite: see if the number of connected components is $|V|/2$

Topological sort of dag

• dag: directed acyclic graph

• Example: a listing of courses in a prerequisite relation so that no course is taken before its prerequisites

• Algorithm 1: Perform DFS, arrange vertices in reverse order of becoming dead-ends

• Algorithm 2: Find source (vertex lacking in-edges), delete it and its adjacent vertices recursively. Order of deletion is a topological ordering
References

Notation ideas by A. Bilodeau, 2006.