Inquiry

- What might happen?
- What is most likely to happen?
- When is it hardest to plan precisely?

Reading: Epp, Ch. 9; handouts
6. Apply the basic notions of combinatorics and discrete probability, including by proof

Subtopic outcomes

6.1 Solve a problem in permutations and combinations*
6.2 Describe the relationship between combinatorics and intractable problems
6.3a Describe basic concepts of probability theory*
6.3b Prove a theorem in probability theory*
6.4 Describe and apply Bayes’ Theorem
6.5 Describe a computational application of probability theory
1. Combinatorics and counting

• What events are possible?
• How many arrangements exist of symbols or numbers?
• How are difficult problems solved?
• How is communication kept secure?

Possibility trees

• A series of events that each has a finite number \(n \) of alternative outcomes may be diagrammed by a possibility tree, which is \(n \)-ary

• *Theorem*: A series of \(k \) events, each with \(n \) possible outcomes, has \(n^k \) distinct paths from root to leaf of its possibility tree

• *Example*: a four-character PIN number with 36 possibilities for each character has \(36^4 \) possible values
State-space search

- **State space**: A set of possible arrangements of values, e.g.:
 - Board configurations in board games
 - Paths in a graph
 - Arrangements of items in a knapsack
 - Assignments of truth values in a formula
- **Transitions** may be defined from state to state, which we can express as a *tree* of exponential size

Multiplication rule

- Suppose an operation has \(k \) steps
- Suppose steps 1 .. \(k \) have \(n_1, \ldots, n_k \) ways to be performed
- Then there are \(\prod_{i=1}^{k} (n_i) \) ways to perform the operation
- From this it follows that there are \(O(2^k) \) ways to perform it
6. Combinatorics and discrete probability

Pigeonhole principle

• (Intuition) If \(n \) pigeons enter \(m \) pigeon holes, and if \(n > m \), then at least one hole must have at least two pigeons
• (Formal) **Theorem:** If \(|A| > |B| \) then \(f : A \rightarrow B \) cannot be injective; i.e., \((\exists a, b \in A, a \neq b) f(a) = f(b)\)
• **Example:** at least two people in Framingham have the same last-four, because there are 10K last-4s and more than 10K persons in Framingham
• **Corollary:** Any function from an infinite set to a finite one is non-injective

Permutations and combinations

• **Permutations:** The possible orderings of elements of a set
• **Combinations:** The unordered subsets of a set
• Our interest is to *count* permutations and combinations in order to determine *possibilities*, so as to compute *probabilities*
Counting elements of disjoint sets

- For a finite set A partitioned as A_1, A_2, \ldots, A_k, $|A| = \sum_{i=1}^{k} |A_i|$

- **Theorem**: for finite disjoint sets A, B, with $B \subseteq A$, $|A - B| = |A| - |B|$

- **Proof**:
 - if $B \subseteq A$, then $B \cap A - B = \emptyset$ (partition of B)
 - so $|B| + |A - B| = |A|$
 - hence $|A - B| = |A| - |B|$

- Also, $|A \cup B| = |A| + |B| - |A \cap B|$

Permutations

- **Definition**: Orderings of n objects taken k at a time, without repetition

- There are $(n!)$ permutations for n objects

- **Example**: There are $5! = 120$ ways to order the letters A, B, C, D, E

- k-permutations ($P(n,k)$): Orderings of n objects taken k at a time

- There are $(n! / (n-k)!)$ k-permutations of n objects

- **Example**: there are $P(6, 3) = 120$ different ways to throw a die such that only 1, 2, or 3 show
Combinations

- **Definition:** the number of ways to select from \(k \) objects at a time, taken from a set of \(n \) objects, without order or repetition
- \(C(n, k) = \frac{n!}{(n-k)! k!} = \frac{P(n, k)}{k!} \)
- **Example:** There are \(C(36, 6) \) ways to play the lottery where 6 numbers are chosen out of 36
- \(C(n, k) \) is also written \(\binom{n}{k} \) (“\(n \) choose \(k \)’’)
- Note that \(n! = n(n-1)(n-2) \times \ldots \times 2 \)

Binomial coefficients

- \(C(n, k) \) is also called a *binomial coefficient*, is computed by Pascal’s Triangle, and is defined by the following recurrence, called *Pascal’s formula*:
 \[
 C(n, k) = \begin{cases}
 1 & \text{if } k = 0 \text{ or } k = n \\
 C(n-1, k-1) + C(n-1, k) & \text{otherwise}
 \end{cases}
 \]
- **Binomial theorem:** \((a + b)^n = \sum_{k=0}^{n} C(n, k) a^{n-k} b^k\)
Binomial theorem

- Gives an expression for \((a + b)^n\) for any \(a, b, n\)
- **Theorem:**
 \[(a + b)^n = \sum_{k=0}^{n} C(n, k) a^{n-k} b^k\]
- Hence the values \(C(n, k)\) are the **binomial coefficients**

Counting partitions

- **Stirling numbers** \(S_{n,r}\) denote the number of ways a set of size \(n\) may be partitioned into \(r\) subsets
- \(S_{n,r} = S_{n,r-1} + S_{n-1,r}\)
Multisets

- A **multiset** is an \(r \)-combination with repetition allowed.
- **Theorem**: the number of multisets of size \(r \) from a set of \(n \) elements is \(C(r + n - 1, r) \).
- Summary of ways of choosing \(k \) elements out of \(n \) elements:

<table>
<thead>
<tr>
<th></th>
<th>ordered</th>
<th>unordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition allowed</td>
<td>(n^k)</td>
<td>(C(k + n - 1, k))</td>
</tr>
<tr>
<td>No repetition</td>
<td>(P(n, k))</td>
<td>(C(n, k))</td>
</tr>
</tbody>
</table>

Cryptography and modular arithmetic

- RSA cryptography uses two keys: **public** (for encryption) and **private** (for decryption).
- The encryption and decryption algorithms use modular arithmetic on very large numbers, including properties of exponents and other number-theoretic theorems.
- Important theorem: \(x^{a+b} = x^a x^b \).
- Public key includes a value \(pq \) and a value \(e \); decrypting requires private key, which includes prime values \(p, q \), very hard to obtain from \(pq \).
Subtopic outcome

6.1 Solve a problem in permutations and combinations*

2. Intractability

- What is a hard problem?
- What is complexity?
- Is there an algorithm that solves SAT in reasonable time?
- Are there solvable problems that are not worth the trouble to solve?
Combinatorial explosion

• Many computational problems are subject to *combinatorial explosion*

• For most state-space-search problems, the number of possible solutions is exponential in problem size

• For some problems, typical for AI, no easy way exists to prune the number of candidate solutions that require examination

• These problems are called *intractable*

Constraint and optimization problems

• *Constraint problem*: To find some value that satisfies a set of constraints or conditions

• *Constraint problem examples:*
 – Search
 – Pattern matching
 – Sort of a set of records

• *Optimization problem*: to find maximum or minimum valued solution to a constraint problem, among all solutions

• Many optimization problems are intractable
Constraint satisfaction problems

- A set X of variables $x_1, x_2, ..., x_n$
- A set C of constraints $C_1, C_2, ..., C_m$, that each specifies acceptable combinations of values for a certain subset of x
- A variable assignment to X that does not violate any of C is consistent or legal
- A variable assignment to all of X is complete
- Desired problem solution: a complete consistent variable assignment

Satisfiability problem (SAT)

- Given a formula ϕ in propositional logic, does a set of variable assignments exist that satisfies ϕ (makes ϕ true)?
- Examples:
 (a) $p \land q \land r$
 (b) $(p \land q) \lor \neg q$
 (c) $p \land \neg(q \lor \neg q)$
- How large a truth table would be required?
- SAT is the set of formulas that are satisfiable
Set partition

- Given a finite set \(S \subseteq \mathbb{N} \), can \(S \) be partitioned into two sets, \(A \) and \(B \), s.t. \(\sum_{x \in A} x = \sum_{y \in B} y \)?
- How many subsets does \(S \) have, hence how many partitions?
- *This problem, like SAT, has a brute-force \(O(2^n) \) solution*

Hamiltonian-cycle problem

- *Problem:* Given a graph \(G = \langle V, E \rangle \), is there a path in \(V^* \) that starts and ends with the same vertex and passes through every vertex exactly once?

- *One solution* is to generate and test every possible sequence of \(|V| + 1 \) vertices to see if it is a path
 - Complexity of the test operation: \(O(n) \)
 - Complexity of generate-and-test: \(O(2^n) \)
Observations about these problems

- Each (SAT, set partition, Hamiltonian cycle) seems to require generating and checking a very large set of candidate solutions.
- Checking a given candidate solution is easy enough.
- But the number of candidates is $O(2^n)$.
- For $n > 100$, the time required could be too much for practical purposes.

Complexity and intractability

- *Complexity of a problem* is the time function of the fastest algorithm that solves the problem.
- *Example*: No search algorithm is better than $O(n)$ for arbitrary collections, so the complexity of the search problem is $\Omega(n)$.
- Some problems are *decidable* but take too long to solve in practice.
- Those *intractable* problems may be characterized mathematically.
Intractable problems

- Some problems have no known polynomial time \((O(n^k))\) solutions for any constant \(k\).
- These are considered intractable because for sufficient \(n\), they “might as well take forever”.
- Exponential-time examples: Hanoi, password guessing, understanding English.
- Others are called \(NP\)-complete problems: solutions are checkable, but not known to be obtainable, in polynomial time.

Complexity classes of problems

- Definition: \(TIME(f(n))\) is the set of problems/languages with solution (acceptance algorithms) of time \(O(f(n))\) for input size \(n\).
- Examples:
 - Sorting is in \(TIME(n \lg n)\) and in \(TIME(n^2)\), because \(O(n \lg n)\) sorts exist.
 - Search for shortest path in a graph is in \(TIME(n^2)\) – Dijkstra algorithm.
 - SAT is in \(TIME(2^n)\).
 - Searching a balanced BST is in \(TIME(\lg n)\).
6. Combinatorics and discrete probability

Polynomial time complexity

- $P = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k)$
- That is, P is the set of problems decidable in $O(n^k)$ time (polynomial time), where n is the size of the problem and k is a constant

- Examples of problems in class P:
 - Searching a collection
 - Sorting an array
 - Generating a graph reachability matrix

- It is not known whether SAT is in P, but no one knows a P-time algorithm to solve it

Exponential time

- $EXP = \text{EXPTIME} = \text{TIME}(2^n)$

- SAT seems to be in EXPTIME but not in P, because it seems that to solve SAT, $O(2^n)$ candidate solutions need to be generated and tested

- Problems that are in EXP but not in P are considered intractable
Reducibility

- Problem B is *reducible* to problem A iff a solution to A enables a solution to B
- Intuitively, B is at least as hard as A
- Example: multiplication is reducible to addition
- If B is *undecidable* and B is reducible to A, then A is undecidable
- By showing that the SAT is reducible to problem P, we can show that P is intractable too

NP-completeness

- Problems with solutions that can be checked in P time, but at least as hard as SAT, are called *NP-complete*
- Example: Traveling Salesperson
- If *any* of these has a polynomial-time solution, then *all* do
- Most researchers think NP-complete problems to have no polynomial-time solutions
Intractability, NPC, and EXPTIME

- Certain problems are thought or known to have only exponential-time, \(O(2^n) \), solutions
- \((EXPTIME – P)\) and NPC are problems considered intractable
- Problems of planning, scheduling, routing, drawing inferences, understanding language, etc., are in general intractable
- *What to do:* Replace intractable problem with a simpler one, e.g., one with a probabilistic or approximate solution

Summary

- Applying the multiplication rule with \(n \) factors generates *combinatorial explosion*
- So the number of steps in exhaustive state-space search is often exponential in the problem size
- *Intractable problems* are ones that are of exponential complexity or to which SAT is reducible
6.2 Describe the relationship between combinatorics and intractable problems

3. Discrete probability

- What will happen in the future?
- What do we expect to happen?
- Can we precisely predict uncertain events?
- How strongly do we believe a claim, when we’re not sure?
Random processes

- *Discrete random process*: one whose outcome is from a set of discrete possibilities that are not predictable with certainty
- *Examples*: tossing a coin, playing lottery, or rolling dice are random processes
- *Probability theory* expresses uncertainty as belief in assertions, quantified in [0..1]

Basic concepts

- *Sample space*: All possible results of an experiment
- *Discrete probability* assumes finite sample space
- *Event*: one particular result; a subset of the sample space
- For event E in sample space S,
 \[P(E) = \frac{|E|}{|S|} \]
Uniform probability space

• A probability space \(S \) is a set of possible outcomes of an experiment

• Example: \(S \) for a die throw is \{1, 2, 3, 4, 5, 6\}

• Let \(|S| = n \) for probability space \(S \)

• Theorem: uniform probability function \(P : S \to \mathbb{R} \) is defined \(P(x) = (1/n) \) for any \(x \) in \(S \)

• Example: Using fair die, \(P(3) = 1/6 \), because there are 6 possible events, all equally likely

More concepts

• Compound event: sets of events

• Probability of an event: the ratio of event’s number of outcomes in the to the size of the sample space; \(0 \leq P(x) \leq 1 \)

• Probability measure: “A mathematical measure on a probability space that can take on values between 0 and 1, with 0 corresponding to the empty set and 1 to the entire space.”
Law of large numbers

• “A theorem that describes the result of performing the same experiment a large number of times.
• “According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.”

Kolmogorov’s axioms

For sample space S and events $A, B \subseteq S$,

1. $(\forall A) \ 0 \leq P(A) \leq 1$
2. $P(S) = 1, \ P(\emptyset) = 0$
3. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• *Useful*: it is irrational to have beliefs that violate the axioms because they will result in poor bets
• *Theorems* that follow: $P(A \cup A^c) = 1$; $P(A^c) = 1 - P(A)$
\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

Intuition:
- \(P(A \cup B)\) is probability of shaded area at top right
- \(P(A \cap B)\) is probability of shaded area at center right
- \(P(A) - P(A \cap B)\) is shown bottom right
- Clearly, the sum of \(P(A)\) and \(P(B)\), minus the intersection’s probability, is \(P(A \cup B)\)

Theorems

Let \(S\) be a finite probability space, with events \(A, B \subseteq S\)

1. **Monotonicity:** \(A \subseteq B \rightarrow P(A) \leq P(B)\)

 Example: In cards, \(P(\text{Heart}) \leq P(\text{Red})\)

2. **Complementary event:**

 \(P(\neg A) = 1 - P(A)\)

 Example: \(P(\spadesuit) = 1 - P(\heartsuit, \diamondsuit, \clubsuit)\) in cards
 (because \(\frac{1}{4} = 1 - \frac{3}{4}\))
Probability of events

• For event E, $P(E) =$
 (number of ways E can occur) ÷
 (# possible outcomes)

• Example: Probability of rolling 9 with two dice is
 $P((3, 6) \lor (4, 5) \lor (5, 4) \lor (6, 3)) ÷$
 $P((1, 1) \lor (1, 2) \lor \ldots \lor (6, 6))$
 $= 4 / 36 = 1/9$

Partial additivity

• Theorem: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• Example:
 $P(\heartsuit \cup Queen) = \frac{1}{4} + \frac{1}{13} - \frac{1}{52}$

• The probability of A or B happening is
 the sum of the probabilities of each,
 discounting the chance of both)
Independent events

- *Intuition:* Independent events can have no effect on each other or overlap with each other
- *Formally:* Events A and B are independent iff $P(A \cap B) = P(A) \cdot P(B)$
- Single coin tosses and die rolls are independent
- *Example:* For draw of cards, $P(\heartsuit)$ is independent of $P(J \text{ or } Q \text{ or } K)$
- For non-independent events, notion of conditional probability is used, i.e., probability of E_1 given E_2

Mutual independence of three events

- Events A, B, C are independent iff
 - They are pairwise independent
 - $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$
- Events A_1, A_2, ..., A_n are mutually independent iff for any subset B of A_1, A_2, ..., A_n,
 $$P(B_1 \cap B_2 \cap \ldots \cap B_m) = P(B_1) \cdot P(B_2) \cdots P(B_m)$$
Additivity under disjunction

Theorem:

• Let S be a finite probability space, $A, B \subseteq S$

• Suppose A, B are disjoint events, i.e., $A \cap B = \emptyset$

• Then

 $P(A \cup B) = P(A) + P(B)$

Example: $P(\heartsuit \text{ or } \diamondsuit) = P(\heartsuit) + P(\diamondsuit) = \frac{1}{2}$

Expected values

• For n equally likely outcomes of a random process, where a_k is the value of the kth outcome, the expected value of the process is

 $\sum_{k=1}^{n} a_k p_k$, where p_k is the probability of a_k

• Examples:

 – In coin toss, expected value is (0.5)
 (heads $= 1$, tails $= 0$
 – In die throw, expected outcome is
 $(1 + 2 + 3 + 4 + 5 + 6) / 6 = 3.5$
 – Expected time for linear search is $(n / 2)$
The binomial distribution

- Probability of k successes (the binomial distribution function):
 \[B(n, k; p) = C(n, k) p^k (1 - p)^{n-k} \]
- *Example*: The probability of having 4 or more heads in 6 coin throws is
 \[\sum_{k=4}^{6} B(6, 4; 0.5) \]

Discrete random variables

- *Definition*: A function from a finite sample space to a finite set of outcomes
- *Example*:
 - Let random variable χ (“Chi”) be the sum of scores for two dice.
 - Then χ takes the value 1 in no case, 2 in 1 case, 3 in 2 cases \{ (1,2), (2,1) \}, etc.
Random variables

• **Definition:** A random variable is a function \(f : S \rightarrow 2^S \) that gives the number of ways each outcome in the sample space \(S \) can occur

• A random variable helps describe the likelihood of outcomes

• **Kinds:** Boolean, discrete, continuous

• **Example:** random variable for throw of two dice:

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
\]

Random distributions

• Probability that a random variable takes a given value is the probability of the set of outcomes where that holds,

\[
P(\chi = k) = P(\{ s \in S \mid \chi(s) = k \})
\]

• Probability distribution function, \(f_\chi(x) \), maps from outcomes to their probabilities

• Examples:
 - Uniform distribution (flat graph)
 - Gaussian distribution (“normal curve”)

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
\]
Prior probability

- **Prior (unconditional) probability** $P(\alpha)$: degree of belief in the absence of other information
- **Joint probability distribution**: grid of probabilities of all combinations chosen from sets of random variables, e.g., weather, traffic
- **Probability density function**: probability distribution of a continuous variable

Conditional probability

- $P(A \mid B) = P(A \cap B) \div P(B)$
- **Interpretation**: The probability of event A, given event B, is the probability that both will occur, divided by the probability of B
- **Example**: Given that the first of two coin tosses is heads, what’s the chance of two heads?
 $P(c_1 = c_2 = H \mid c_1 = H) = P(H-H \text{ and } c_1 = H) / P(c_1 = H) = \frac{1}{4} / \frac{1}{2} = \frac{1}{2}$
- $P(A \cap B) = P(A \mid B) \times P(B)$
- $P(B) = P(A \cap B) \div P(A \mid B)$
Subtopic outcomes

6.3a Describe basic concepts of probability theory*

6.3b Prove a theorem in probability theory*

4. Bayes’ Theorem

• What is evidence good for?
• What are techniques to put evidence to use?
Inverse probability

• *Intuition:* given some knowledge of an object, and some statistics about the population containing the object, what else can we surmise about the object?

• *Example:* Suppose we know 2/3 of the numbered cards in a pile are red, and ¼ of the JQK cards are red, and ¾ of all the cards are JQK. If a card randomly drawn is red, then by inverse probability we can calculate the probability that it is a J, Q, or K.

Bayes’ Theorem

• Established law applying inverse probability

• By Thomas Bayes, pub. 1763

• Helps relate cause and effect by showing how we can learn probability of causes by understanding an effect

• Let H be a set of hypotheses $h_1, h_2, ...$, explaining evidence E

• *Theorem:* $P(h_i \mid E) = P(E \mid h_i) P(h_i) \div P(E)$
Applications of Bayes’ Theorem

- By the theorem, some medical screening tests may be useful but more accurate results may be needed to diagnose a disease, because such tests may yield false positives or negatives

- *Example:* Suppose 0.5% of people have a disease, and a test has false positive rate of 3% and false negative rate of 1%

- Then under Bayes’ theorem, 99.995% of negative results are correct, but only 14% of persons with positive results actually have the disease

A traffic scenario

- Bayesian networks reflect *multiple causalities*

- *Example:* Why is traffic heavy, given evidence of orange barrels or flashing lights?

- Accidents cause heavy traffic and cause emergency vehicles to arrive; these vehicles cause flashing lights

- Construction causes heavy traffic and causes orange barrels to be placed

- *Evidence* is traffic, barrels and/or flashing lights; *cause* is accident or construction
Bayesian net for traffic problem

- The unlabeled BBN below reflects causal relations

![Bayesian network diagram]

- To explain traffic slowdown as due to construction or accident, use evidence of orange barrels (B), bad traffic (T), and flashing lights (L)

Example of Bayesian inference

- Suppose we know the following a priori:

<table>
<thead>
<tr>
<th>Constr</th>
<th>Traffic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>.3</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>.2</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>.1</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>.4</td>
</tr>
</tbody>
</table>

- Then \(P(C \mid T) = P(C \land T) \div P(C \land T) + P(\neg C \land T) \)
 \[= .3 \div (.3 + .1) = 0.75 \]

- Adding orange-barrels evidence, if available, will increase likelihood of the explanation that construction is the cause
Speech recognition

- Bayesian probabilistic inference is used
- Where *words* is a sequence of words, *signal* is sound, we want to maximize \(P(\text{words} \mid \text{signal}) = \alpha P(\text{signal} \mid \text{words}) P(\text{words}) \)
- *Acoustic model*: \(P(\text{signal} \mid \text{words}) \)
- *Language model*: \(P(\text{words}) \)
- HMM for toe-mah-toe | toe-may-toe: [pic 9]

Probabilities of success

- Assume *n* trials in an experiment where the result may be success or failure, and the probability of success in each trial is *p*
- Each way of having *k* successes has probability \(p^k(1 - p)^{n-k} \)
- There are \(C(n, k) \) ways to have *k* successes
6.4 Describe and apply Bayes’ Theorem

5. Computational applications

- What’s the right action in an uncertain situation?
- Will it rain?
- Is belief worthwhile?
Cases

- Hashing; randomized algorithms for video games
- Average-case analysis of algorithms
- Planning under uncertainty in AI
- *Games*: Making play more realistic by generating unpredictable events
- Evolutionary computation
- Bounded rationality, Markov processes, modal logic

Application of stochastic methods

Some applications:

- *Diagnostic reasoning*, because cause-effect relationship is not always obvious
- *Natural language processing*, because semantics are fuzzy or ambiguous
- *Planning*, because of uncertainty of future events and cause-effect relationships
- *Learning*, because conclusions to draw from experience are ambiguous and probabilistic
Modal logic

- Modal operators reflect belief:
- **Unless**: \(p(x) \rightarrow q(x) \) unless \(r(x) \)
- Operator \(Ab \): \(p(x) \) unless \(ab \ p(x) \rightarrow q(x) \), where \(ab \) refers to abnormal instance of \(p \), e.g., bird with broken wing
- Operator \(M \): \((\forall x) \) good-student\((x) \land M \) study-hard\((x) \rightarrow graduates(x) \), where \(M \) means “is consistent with”, i.e., the fact that \(x \) studies hard is consistent with what we know

Approximation and randomized algorithms

Why compute an approximation rather than an exact result?

- Exact solution algorithm may take too much time (*Example*: shortest tour through \(n \) cities)
- Exact results may have infinitely large representation (*Example*: square root)
- Approximate solution may be used as part of a larger exact algorithm
Acting under uncertainty

- *Rational decisions* under uncertain information depend on
 - Relative importance of multiple goals
 - Probabilities of achieving goals by alternative actions
- *Diagnosis*: knowledge only provides a *degree of belief* in [0..1)
- Degree of belief is expressed using probability theory

Bounded rationality

- Notion suggested by Herbert Simon, 1972, as alternative to classical rationality assumption of economic theory
- *Argument*: Humans have limited knowledge and resources for decision making
- Alternative goal to optimality: *satisficing* (good enough)
- *Rational agent*: one that chooses actions that yield maximum expected utility averaged over all outcomes
Markov chains

- Probability of being in a given state at a given time is dependent on state at previous times
- *First-order Markov chain* is one where probability of present state depends *only* on previous state
- *Example*: weather at any location

Example: Weather

- Let states be \{sunny, cloudy, rainy\}
- Let transitions be as follows:

 \[
 \begin{array}{ccc}
 \text{sun} & \text{cloud} & \text{rain} \\
 \text{sunny} & .4 & .5 & .1 \\
 \text{cloudy} & .2 & .5 & .3 \\
 \text{rainy} & .1 & .3 & .6 \\
 \end{array}
 \]

- First-order Markov model (right):
Querying a Markov model

- **Example problem:** If it’s rainy today, what is the probability that it will be rainy two days from now?
- **Solution:** Following the Markov model on previous slide, find

 \[P(r, r, r) + P(r, s, r) + P(r, c, r) \]

 \[= (0.6)(0.6) + (0.1)(0.1) + (0.3)(0.3) = 0.46 \]

Markov decision processes

- Defined by initial state \(s_0 \), transition model \(T(s, a, s') \), and reward function \(R(s) \)
- A solution specifies a *policy* \(\pi(s) \): what agent should do given any state of environment
- Policies have *expected utilities*: utility of possible environment histories generated by it
- Optimal (maximal-utility) policy is sought
- Future rewards may be discounted in deciding expected utility
Evolutionary computation

- State space is explored comparing a population of states rather than one at a time
- Populations of solutions to a problem are generated starting with a random guess
- Fitness tests are applied
- A new generation is chosen and altered using random mutation and crossover
- The process iterates, yielding better and better solutions

Subtopic outcome

6.5 Describe a computational application of probability theory
References

