2. Spreadsheets and decision support

1. Using spreadsheet formulas
2. Cell referencing
3. Presentation of data
4. Named functions

Inquiry

• Have you used a spreadsheet?
• Why are spreadsheet skills required for many majors?
• What is decision support?
• What will you need to know about spreadsheets in your personal and work life?
2. Spreadsheets

Topic objective

Explain and apply principles of spreadsheet use

Essential and priority objectives

2.0a Recall basic spreadsheet concepts*
2.1a Explain why spreadsheet formulas are used**
2.1b Use spreadsheet formulas**
2.2a Explain or use relative and absolute referencing*
2.3a Explain spreadsheet formatting features*
2.3c Create a spreadsheet from a description of its contents*†
1. Using spreadsheet formulas

- What is spreadsheet software for?
- What is the key feature of a spreadsheet?
- What does algebra have to do with business?

Subtopic objectives

2.1a Explain why spreadsheet formulas are used**
2.1b Use spreadsheet formulas**
Spreadsheet software

- Data, numeric and text, is arranged as a grid
- Some numbers are computed from others
- Summary and projection info are needed for business purposes for decision support
- Formulas are mathematical expressions to compute values from other values

Examples:
- Sums of columns of numbers
- Statistics about sets of numbers

How businesses use spreadsheets

- Record keeping (journals, financial summaries)
- Analysis of trends and relationships of data for decision support
- Planning for profit by projecting current patterns into the future
- Analysis of data by breaking down quantities into their components
- Of special interest: to understand and show dependency relationships in the data
- Formulas can express these dependencies
Where spreadsheets started

- Businesses used yellow or green paper sheets with vertical and horizontal lines
- Business figures were recorded by item, time, and category
- To calculate totals, heavy mechanical adding machines were used
- In 1970s electronic hand calculators helped
- Electronic versions of spreadsheets did calculations automatically

Cell contents

- Three most common kinds:
 - Label (non-numeric)
 - Numeric literal (2, 3.52)
 - Formula, normally referring to contents of other numeric cells
- Columns are denoted by letters
- Rows are numbered
- Formulas begin “=“, e.g.:
 \[=A1 + A2\]
 \[=\text{sum}(A1, A2)\]
A principle of information integrity

Use formulas to calculate any values that depend on other cell values

Why?
- To apply consequences of changes in data values automatically, reliably
- To avoid errors when data changes

Formulas use algebra
- A spreadsheet formula is an algebraic expression with an equal sign to its left
- Elements:
 - constants (2, 3.5)
 - variables (cell references, e.g., C2)
 - operators (+, −, /, *)
 - named functions (see Sec. 2.4)
- Operators are applied using order of operations (add/sub before mult-divide)
Example: batting averages

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>AB</th>
<th>R</th>
<th>H</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mauer, Min</td>
<td>457</td>
<td>73</td>
<td>159</td>
<td>=D2/B2</td>
</tr>
<tr>
<td>3</td>
<td>Jeter, NY</td>
<td>546</td>
<td>97</td>
<td>188</td>
<td>=D3/B3</td>
</tr>
<tr>
<td>4</td>
<td>Tejada, Bal</td>
<td>564</td>
<td>91</td>
<td>187</td>
<td>=D4/B4</td>
</tr>
<tr>
<td>5</td>
<td>Guerrero, La</td>
<td>546</td>
<td>82</td>
<td>180</td>
<td>=D5/B5</td>
</tr>
<tr>
<td>6</td>
<td>Ramirez, Bos</td>
<td>446</td>
<td>78</td>
<td>142</td>
<td>=D6/B6</td>
</tr>
<tr>
<td>7</td>
<td>Johnson, Tor</td>
<td>410</td>
<td>78</td>
<td>130</td>
<td>=D7/B7</td>
</tr>
<tr>
<td>8</td>
<td>DeRosa, Tex</td>
<td>453</td>
<td>71</td>
<td>143</td>
<td>=D8/B8</td>
</tr>
<tr>
<td>9</td>
<td>Suzuki, Sea</td>
<td>604</td>
<td>88</td>
<td>190</td>
<td>=D9/B9</td>
</tr>
</tbody>
</table>

- Note formula in “Avg” column (Formulas/Show)
- When formula is copied down, row number adjusts automatically

Ledger for a profit plan

<table>
<thead>
<tr>
<th></th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price</td>
<td>$10.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>Projected sales qty</td>
<td>5000</td>
<td>2500</td>
</tr>
<tr>
<td>Gross sales income</td>
<td>$50,000</td>
<td>$37,500</td>
</tr>
</tbody>
</table>

Expenses

<table>
<thead>
<tr>
<th></th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup production</td>
<td>$2,000</td>
<td>$2,000</td>
</tr>
<tr>
<td>prod cost per unit</td>
<td>$3.00</td>
<td>$3.00</td>
</tr>
<tr>
<td>Production</td>
<td>$17,000</td>
<td>$9,500</td>
</tr>
<tr>
<td>Distribution</td>
<td>$6,250</td>
<td>$3,125</td>
</tr>
<tr>
<td>Marketing</td>
<td>$16,000</td>
<td>$16,000</td>
</tr>
<tr>
<td>Overhead</td>
<td>$4,000</td>
<td>$4,000</td>
</tr>
<tr>
<td>Total expenses</td>
<td>$43,250</td>
<td>$32,625</td>
</tr>
<tr>
<td>Net profit</td>
<td>$6,750</td>
<td>$4,875</td>
</tr>
</tbody>
</table>

This ledger helps determine unit price that would generate greatest profit, $10 or $15. Gross sales is computed as product of unit price and projected sales qty.

Features:
- Named cells
- Formulas with +, −, *
- What-if scenarios
- Currency formatting
Excel array formulas

- Place an entire column or row under the control of a single editable formula

- **Steps:**
 1. Select destination cells
 2. Type formula
 3. Press `ctrl-shift-enter`

Screen operations (Excel)

- **Edit cell:** [F2] or right-click
- **Freeze panes:** To keep headings on screen when scrolling
- **Copy** a cell or range by dragging small square at lower-right corner of cell
- **Insert** row or column: `Alt-I, R` or `Alt-I, C`
- **Delete** row or column: Select column or row in margin; `Alt-E, D`
- **Widen column** or **deepen row:** Select solid bar between rows or columns at edge of worksheet
2. Spreadsheets

Paging, scrolling and zooming

• To change worksheet, press Control-PgDn or click tab
• Paging (PgUp, PgDn) moves through a worksheet a page or screen at a time
• Home and End keys move to start or end of row
• Ctrl-Home, Ctrl-End to top or bottom of sheet
• Scrolling (up, down, scroll bars) changes what part of a sheet is displayed
• Zooming changes size of the sheet’s image; is specified in %; may be set for fit-in-window

Group exercise

1. Download the file sales-exercise.txt
2. Paste into a spreadsheet
3. Write formulas to calculate totals for each quarter and for each division

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>21</td>
<td>42</td>
<td>38</td>
<td>14</td>
</tr>
<tr>
<td>West</td>
<td>25</td>
<td>106</td>
<td>74</td>
<td>81</td>
</tr>
<tr>
<td>North</td>
<td>33</td>
<td>40</td>
<td>27</td>
<td>127</td>
</tr>
<tr>
<td>South</td>
<td>105</td>
<td>82</td>
<td>102</td>
<td>93</td>
</tr>
</tbody>
</table>
2. Spreadsheets

2. Cell referencing

• What happens when we *copy* a formula from one cell to another?
• *Example*: a column consisting of sums of rows in the batting-average sheet

Subtopic objectives

2.2 Explain or use relative and absolute referencing*
Referencing cells

- **Principle:** write formulas that are convenient to copy
- Relative references adjust column or row when copied
- Absolute references do not adjust
- Multiple worksheets in the same file may reference each other’s cells
- **Circular references** (error!) refer directly or indirectly to a cell that refers back

Relative and absolute references

- A2 is an example of a *relative reference*, because when it is used in A1, for example, A2 means “the cell just to the right”
- When copied down, A2 becomes A3
- When copied to the right, A2 becomes B2
- To prevent adjustment of row or column in a reference, make it an *absolute (fixed) reference* by using “$”:
 - A$2 means the 2 (for row) is fixed
 - $A2 means the A (for column) is fixed
Absolute-referencing example

- This grade-keeping worksheet illustrates relative and absolute referencing. Weights for problems 1, 2, and 3 are 40%, 50%, and 10%.
- Percentage weights for quiz questions are absolute references

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weight</td>
<td>40</td>
<td>50</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Problem #</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Total</td>
</tr>
<tr>
<td>3</td>
<td>Smith</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>60*</td>
</tr>
<tr>
<td>4</td>
<td>Jones</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>85*</td>
</tr>
</tbody>
</table>

* = B$1*B3 + C$1*C3 + D$1*D3

Using multiple worksheets

- A spreadsheet file may contain multiple worksheets; e.g., in Excel
- Each worksheet may be named; names are on tabs at lower-left corner of Excel screen
- The default names are “Sheet1,” “Sheet2,” etc. right-click to rename a worksheet
- Reference a cell in a different worksheet by using worksheet name followed by exclamation point, e.g., “=february!F4”
2. Spreadsheets

Named cells

• A cell may be referenced by name if a name is defined for it

 Example: =C5 + bonus adds the contents of cell D1 to C5’s contents if D1 is named “bonus”

• Names of cells are absolute references

• Excel: right-click on a cell or range, give a name to it

Copy/paste options

• May copy selectively:
 – Values only
 – Formulas only
 – Formats only

• May transpose cells in pasting, so that a horizontal series of cells is copied vertically or vice versa

 Copy horizontal range to stack vertically: Select; Copy; Edit/Paste Special/Transpose

• Use Paste Special to access these options
Applying relative and absolute references

Problems:
1. What is “A4” copied two cells down?
2. “$D2” copied one cell to the right?
3. “$D2” copied one cell down?

Solutions:
1. A6, because row is relative
2. $D2, because column D is absolute
3. $D4, because row is relative

3. Presentation of data

- How do you format a table?
- How are business transaction records recorded and presented?
- What’s a budget?
Subtopic objectives

2.3a Explain spreadsheet formatting features*
2.3b Explain ways to present data in spreadsheets
2.3c Create a spreadsheet from a description of its contents*†

Formatting cells

- **Alignment:** Left, right, centered; top, bottom, vertically centered
- **Word wrap:** Enables multiple lines of text in one cell
- **Border rules:** outside, inside, horizontal only, vertical only; weight, color, style
- Precision of numeric display may be set
- Currency, percentage formats are available
- **Merging cells:** e.g., to center one heading over two or more columns
2. Spreadsheets

Named styles in Excel

- Cell formats may be defined as are named styles in MS Word
- In Excel, choose *Home / Styles / Cell Styles*
- Any cell attributes may be set in a named style; e.g., font, border, background, alignment, numeric precision

Journals and budgets

- A *journal* lists transactions in chronological order
- A transaction has a *date*, a *description*, an *amount* (or sub-amounts), and *budget categories* for the sub-amounts
- A *budget* summarizes information in a journal according to budget category and projects future planning for those categories
Journal example

<table>
<thead>
<tr>
<th>Date</th>
<th>Chk Description</th>
<th>Amt.</th>
<th>Balance</th>
<th>Income</th>
<th>Expenses</th>
<th>Food</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>FSC</td>
<td>200</td>
<td>1200</td>
<td>550</td>
<td>0</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FSC rent</td>
<td>-400</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nat. gas</td>
<td>-25</td>
<td>1150</td>
<td></td>
<td>350</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1125</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

- Each budget category has a column; use categories for a business or organization (not for a student)
- For each transaction (check or deposit) enter *date* and *description*
- Enter sub-transaction amounts under columns
- Compute balance after transaction
- Compute transaction amount as sum of income sub-amounts minus expense sub-amounts

Budget example

Show *actual* and *projected* amounts by budget category

Actual amounts should reference cells in journal worksheet

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Actual</td>
<td>Projected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Job</td>
<td>550</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Family</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Expenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rent</td>
<td>600</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Food</td>
<td>200</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Transport</td>
<td>50</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Misc.</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Surplus/deficit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=SUM(B8:B11)</td>
<td>=SUM(E8:E11)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=C6-C12</td>
<td>=F6-F12</td>
</tr>
</tbody>
</table>
Formulas used in journal, budget

Journal:
- Monthly total by budget category
- Transaction amount (total of sub-transactions)
- Balance after transaction

Budget:
- Actual amount by category (referencing category total in journal)
- Sums for income, expenses
- Surplus/deficit

Some generic formulas for journals

- To sum a column of numbers, the formula should be something like \(=\text{sum(d4:d12)} \)
- To find the amount of a transaction whose income sub-transactions are \(d4 \) to \(f4 \), with income \(g4 \) to \(k4 \), use \(=\text{sum(d4:f4)} - \text{sum(g4:k4)} \)
- To find the balance after a sub-transaction, add the current transaction amount to the balance after the previous transaction
2. Spreadsheets

Charts

- For time-series data, use bar or line graphs
- For non-time-based data, use pie chart

To make a pie chart of data (below-left) in Excel 2007:
1. Select from “Work” down to “12” below
2. Choose Insert / Charts / Pie, choose sample format
3. Labels may be changed by use of Design tab

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>40</td>
</tr>
<tr>
<td>Commute</td>
<td>10</td>
</tr>
<tr>
<td>Study</td>
<td>12</td>
</tr>
</tbody>
</table>

3D charts

A table of figures can be represented item by item in three dimensions

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>490.00</td>
<td>450.00</td>
<td>490.00</td>
</tr>
<tr>
<td>Food</td>
<td>189.00</td>
<td>175.00</td>
<td>150.00</td>
</tr>
<tr>
<td>Transport</td>
<td>60.00</td>
<td>60.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Entertainment</td>
<td>50.00</td>
<td>40.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>
Linking and embedding spreadsheets in documents

• A spreadsheet may be copy-pasted (embedded) into documents such as Word, PowerPoint

• Alternative: linking (references; like Windows shortcuts, hyperlinks)
 – Double-clicking on a linked spreadsheet object runs the spreadsheet application to enable editing
 – Edits are saved to the linked file

Importing and embedding

• Example: using an Excel spreadsheet in a .PPT slide

• Importing: table becomes a .ppt table

• Embedding (with Paste): double-clicking table within .ppt file opens it in Excel for editing; original Excel file is not affected
2. Spreadsheets

Linking

Linking (with Paste / Special):

• Editing table in .ppt file, using Excel, does affect original Excel file
• Editing original Excel file affects table’s content in .ppt
• Linking is a case of the use of references; the .ppt file contains the location of the Excel file material, but does not contain the text

4. Named functions

• Are there alternatives to algebraic formulas?
• Can a formula perform a looping computation?
• How can letter grades be obtained from numeric quiz and project scores?
Subtopic objective

2.4 Describe some named spreadsheet functions

Features of named functions

- A function is a mapping from a set of parameter values to a set of return values.
- Parameters (arguments) are the data operated on.
- The return value is the result.
- A function such as SUM has parameters (in parentheses) and a return value (the value shown in the cell):

 \[=\text{SUM}(A2, A4, B5) \]
Cell ranges

- Some functions take two or more parameters
- The *SUM* function may take a *range* as a parameter: \(=SUM(A2:B5) \)
- A range denotes the set of cells in the rectangle defined by the two cells referenced in the range formula
- A *cell* may contain a *numeric* value, but not a range

Some named functions on ranges

- *MAX* returns largest, *MIN* returns smallest
- *AVERAGE* returns arithmetic mean (sum divided by number of cells)
- *MEDIAN* returns middle value in range
- *MODE* returns most common value
- *STDDEV*: Standard deviation, a measure of variance from the mean
Functions that return counts

- \textit{COUNT}, \textit{COUNTA}, and \textit{COUNTIF} return the number of cells in a range that contain data or data with certain features
- \textit{COUNT} returns \# of nonempty numeric cells
- \textit{COUNTA} counts label cells
- \textit{COUNTIF}(\textit{range, expr}) returns the number of cells in a \textit{range} that satisfy the predicate \textit{expr}; example \texttt{COUNTIF(A2:C5, \textasciitilde\textgreater\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde1000)} returns the number of cells in range A2:C5 that contain values over 1000

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Loan amortization} & & \\
\hline
- Starting with interest rate, number of payments, and amount borrowed, function \texttt{PMT} returns the amount needed to pay off loan in \textit{x} years in monthly payments & & \\
\hline
\textbf{Loan amount} & & \\
\hline
\textbf{Monthly payment} & & \\
\hline
\textbf{Interest} & \textbf{30 yrs} & \textbf{15 yrs} & \\
\hline
4.00\% & \$1,909.66 & \$2,958.75 & \texttt{=PMT(A5/12, 15*12, -C3)} \\
5.00\% & \$2,147.29 & \$3,163.17 & \\
6.00\% & \$2,398.20 & \$3,375.43 & \\
7.00\% & \$2,661.21 & \$3,595.31 & \\
8.00\% & \$2,935.06 & \$3,822.61 & \\
9.00\% & \$3,218.49 & \$4,057.07 & \\
10.00\% & \$3,510.29 & \$4,298.42 & \\
\hline
\end{tabular}
\end{table}
Table lookup

- For a spreadsheet with a two-column table of reusable data, e.g., letter grades for certain ranges of numeric scores,
- To use values in col. 1 to look up values in col. 2:
 \[=VLOOKUP(B2, E2:F6, 2) \]

<table>
<thead>
<tr>
<th>Student</th>
<th>Numeric score</th>
<th>Letter grade</th>
<th>Grading criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>74</td>
<td>C</td>
<td>0 F</td>
</tr>
<tr>
<td>Bell</td>
<td>57</td>
<td>F</td>
<td>60 D</td>
</tr>
<tr>
<td>Crane</td>
<td>95</td>
<td>A</td>
<td>70 C 80 B 90 A</td>
</tr>
</tbody>
</table>

Goal seeking

- Example: What price can we afford for a machine if we have $5000/yr. to budget, given interest on five-year financing of 8%?
- Solution: Given the values of interest rate, term, and Yearly payment, use Data / Whatif analysis / Goal seek to set the price of machine

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of machine</td>
<td>$19,963.55</td>
</tr>
<tr>
<td>Interest rate</td>
<td>8%</td>
</tr>
<tr>
<td>Term in years</td>
<td>5</td>
</tr>
<tr>
<td>Yearly payment</td>
<td>$5,000.00</td>
</tr>
</tbody>
</table>
Users co-create their computing environments

- *Formulas* are small, reusable programs
- Formulas may be copied
- Spreadsheets are larger reusable computing environments

Metadata in this topic

- Formulas
- Cell references
- Table headings
- Function names
References

