Modeling indirect interaction
for evolving adaptive multi-agent systems
in dynamic persistent environments

Keil dissertation proposal
David M. Keil
April 11, 2006
Department of Computer Science and Engineering
University of Connecticut
Advisor: Dina Q Goldin

Three research communities
• Multi-agent systems (MAS)
• Evolutionary computation (EC)
• Models of computation

Subcommunities:
– Theory and Practice of Open Computational Systems (TAPOCS)
– Environments for Multi-Agent Systems (E4MAS)
– Foundations of Interactive Computation (FInCo)
– EC in dynamic environments
– Coordination

Common trends in EC and MAS research
• Trend toward addressing environments that are dynamic and persistent (to be defined)
• Trend toward using agents in MASs that communicate via their environments
• We call this communication via the environment indirect interaction
• The theory of these fields is emerging

A gap between practice and theory in MAS and EC research
• Whereas in practice, agents in MASs and EC often interact indirectly via their environments…
• …theory of concurrency models all interaction as direct message passing
• Gap: Indirect interaction in practice, direct interaction in theory
• Q: Is indirect interaction necessary to solve certain classes of problems?
• A (our central hypothesis): Yes. Hence new, more expressive models are needed to close the gap

Outline
1. Relevant definitions
 • Algorithmic computation
 • Interactive computation
 • Multi-stream interaction
 • Direct vs. indirect interaction
2. Indirect interaction in MAS research
3. Indirect interaction and adaptation in EC
4. Formal models of interaction
5. Our research goals

Algorithms
Algorithmic computation (Knuth): The effective transformation of a finite, pre-specified input, to a finite output, in a finite number of steps.

Finite input → Program → Finite output

• Algorithms compute functions
• A system that executes an algorithm is closed
• Algorithms are equivalent to Turing-machine computation
Interactive computation

Interactive computation (Wegner): The ongoing exchange of data among the participants (agents or their environment) such that the output of each participant may causally influence its later inputs.

- Interaction involves feedback from *environment* during the computation
- Interaction is assumed to be unending
- Example: An automatic car driving from point A to point B

Sequential interaction

Sequential interactive computation: Interaction involving two participants, at least one of which is a finite computing agent (machine, device).

- Characterized by a single interaction stream of input/output; input alternates with output
- If one participant is an agent, the other is its environment
- Interaction may involve changes of state

Multi-stream interaction

Multi-stream interaction: Interactive computation involving more than two entities; the entities may be asynchronous.

In contrast to sequential interaction, multi-stream interaction may include:

- Nondeterminism when attempts to write collide
- Dynamic linking and unlinking, creation/destruction
- *Indirect* interaction via a shared environment

Direct and indirect interaction

Direct interaction: interaction via messages, where the identifier of the recipient is specified in a message.

Indirect interaction: interaction via persistent, observable changes to a common environment; recipients are any agents that will observe these changes.

- Sequential interaction is direct
- Preconditions for indirect interaction:
 - Agents share access to parts of the environment
 - Persistence of environment
- Example of indirect interaction: use of semaphores in process synchronization (critical section problem)

Outline

1. Relevant definitions
 - Algorithmic computation
 - Interactive computation
 - Multi-stream interaction
 - Direct vs. indirect interaction
2. *Indirect interaction in nature and MAS research*
3. Indirect interaction and adaptation in EC
4. Formal models of interaction
5. Our research goals

Stigmergy in nature

1. Ants foraging for food: Ants leave pheromone trail, prefer existing trails, blaze shorter and shorter trails to and from food
2. Termites gathering chips into pile: Move at random, pick up chip when encountered, put down when another chip found; the pile structure is used to coordinate creation of pile (*StarLogo*)
3. Slime mold dividing and aggregating: These amoeba may aggregate by emitting a chemical, migrating toward its greatest concentration

Q: Is stigmergy essential for some tasks?
Ubiquity of indirect interaction

- **Social biology**: Social insects interact by modifying common structures or through pheromones
- **Operating systems**: Processes communicate via semaphores in shared memory
- **Coordination languages**: Shared tuple spaces enable coordination in Linda
- **Anatomy**: Cells exchange information via hormones in the blood stream
- **Economics**: A market is an environment for buyers and sellers that serves as a medium for indirect interaction

Properties of indirect interaction

- **Time decoupling (asynchrony)**: State changes persist
- **Anonymity**: Recipient ID not used in access
- **Space decoupling**: Agents need not meet
- **Non-intentionality**: Agents need not have goal of communicating
- **Hybrid nature**: Physical environment may play role
- **Late binding** of recipient

What is an environment?

An *environment* of a system of computing entities is a physical or virtual setting that acts as the producer of the system’s inputs and consumer of its outputs.

- The environment is a participant and a memory, not just a medium for message transport
- This creates a need to elevate the MAS environment to first-class status
- EU conferences (e.g., E4MAS) have called attention to role of environments

Environments for multi-agent systems

E4MAS 2005 Proceedings cited as examples the environments of:
- visitors to a web site;
- a system of autonomous guided vehicles;
- a system of manufacturing control;
- a PDA-based system of agents to help support activities of museum visitors.

All involve indirect interaction

A taxonomy of environments

<table>
<thead>
<tr>
<th>Amnesic vs. Persistent</th>
<th>Static vs. Dynamic</th>
<th>Virtual vs. Physical</th>
</tr>
</thead>
</table>

- An environment is *amnesic* if its outputs depend only on its immediately preceding inputs
- An environment E is *static* with respect to an agent or MAS A if its outputs to A are strictly dependent on its previous inputs from A
- A *virtual* environment is accessed digitally; a *physical* environment is observable only by analog sensors

Adaptation in difficult environments

- The most difficult problem environments are persistent, dynamic, and physical
- MASs can offer powerful adaptive, flexible solutions in such environments
- **Conjecture**: Indirect interaction provides added power in MAS solutions because of anonymity, asynchrony, space decoupling, non-intentionality
Keil Modeling indirect interaction

Adaptation and multi-agent systems
- MASs enable distributed AI (Ferber)
- **Behavior**: action to change the environment
- **Adaptation**: learning that changes behavior – occurs in dynamic persistent environments
- MASs are often flexible enough to adapt well
- Three ways to view adaptation:
 - Ontogenetic (adaptive agent)
 - Sociogenetic (adaptive population)
 - Phylogenetic (adaptation by species)
- **Sociogenetic adaptation** = adaptation by multi-agent systems

Decentralized, self-organizing systems
- Decentralized and self-organizing systems lend themselves to flexibility and adaptiveness
- **Where required**: in environments that are dynamic, persistent, multi-agent, decentralized, and self-organizing.

Outline
1. Relevant definitions
 - Algorithmic computation
 - Interactive computation
 - Multi-stream interaction
 - Direct vs. indirect interaction
2. Indirect interaction in nature and MAS research
3. **Indirect interaction and adaptation in EC**
4. Formal models of interaction
5. Our research goals

Example: checkers heuristics
- A set of checkers-playing heuristics (weights of attributes of a board layout), is evolved (Samuels ’59)
- Fitness: rate of wins that a set of heuristics obtains
- Population \(P \) consists of sets of weights (values) of different attributes of a checkers board configuration
- E.g., opportunity to jump is of weight 5, opportunity to king is 3, etc.
- EC here refines heuristics that help compute a function from board configurations to (good) moves
- Fitness function is applied by putting heuristics in competition with other heuristics

The evolutionary algorithm
- A population-based approach to function optimization
- Solutions are evolved, using selection, mutation, crossover
- Traditional EC uses **objective** (fitness) function to evaluate an element of a population

\[
\begin{align*}
 t &\leftarrow 0 & \text{// time} \\
 \text{initialize} \ (P_{0}) &\text{// evolving population} \\
 y &\leftarrow \text{evaluate} \ (P_{0}) & \text{// fitnesses of population members} \\
 \text{while not terminate} \ (y, t) & \text{do} \\
 t &\leftarrow t + 1 \\
 P_{t} &\leftarrow \text{select} \ (P_{t-1}, y) & \text{// choose a good new generation} \\
 P_{t} &\leftarrow \text{alter} \ (P_{t}) & \text{// involves mutation, crossover} \\
 y &\leftarrow \text{evaluate} \ (P_{t}) & \text{// generates a vector of fitnesses} \\
\end{align*}
\]

Based on (Michalewicz, 1996)
- The evolution occurs **offline**, not embedded in environment

EC has addressed static environments
- Environment is **static** in the checkers example because the game rules don’t change during evolution
- **Static environment** = single (unchanging) fitness function
- In a **dynamic** environment, fitness or reward will change as the environment changes
- An interactive agent in a changing environment must adapt its response as environment changes
- **Single fitness function in EC** ⇒ Environment cannot be dynamic
Policy in a dynamic environment

- When environment changes policy must evolve; policy search is a reinforcement-learning concept
- A rational policy: one that maximizes reward

The policy of agent M, with respect to environment E, is a computable function from possible perceptions, or models of E, to M’s set of outputs.

The fitness of a policy in environment E, is the expected long-term reward in E of an agent with that policy.

- In dynamic environment, reward function evolves
- Policy must change as the environment’s responses to agent change; policy search is online

Dynamic-environment example

- Suppose we play cat-and-mouse on a grid
- Agent is mouse; Environment is cat and grid
- Goals of mouse policy: escape by fleeing or hiding
- Assume mouse policy is to be evolved; fitness function is survival rate of a policy
- If cat speeds up over time, then mouse policy must switch from flee to hide
- Traditional evolutionary algorithm fails here because it assumes static environment

The evolutionary algorithm revisited

- When environment E is dynamic, EA must be parameterized with it

```
T ← 0
initialize ($P_0$, $E_0$)
y ← evaluate ($P_0, E_0$)
while not terminate ($y, T$) do
    T ← T + 1
    $E_t$ ← update-environment ($E_{t-1}, y$)
    $P_t$ ← select ($P_{t-1}$, $y$)
    $P_t$ ← alter ($P_t$)
    y ← evaluate ($P_t, E_t$)
```

- Goal is to evolve solution population P to better fitness relative to changing environment
- If update-environment is autonomous, then evolution of the population is not an algorithm!

No Free Lunch theorem (1996)

- No algorithmic procedure can optimize cost functions better than any other algorithmic procedure, averaged over all cost functions.

$$
\sum_f P(f | m, a_1) = \sum_y P(y | m, a_1)
$$

- $c = \text{histogram of cost function } f$
- a_1, a_2: arbitrary function-optimization algorithms
- $P = \text{probability of histogram}$
- $m = \text{a sample size}$
- NFLT corollary: If a given optimizing algorithm does well on one problem, it will do poorly on another one
- Result: Human domain knowledge is needed for most evolutionary computation

Resolving the NFLT paradox

- Paradox: Whereas by NFLT good general-purpose problem-solving algorithms can’t exist...
- …still, such processes are known to exist, such as natural evolution of life, and the scientific method
- Solution: NFLT applies to algorithms in static environments; does not apply to interactive learning processes occurring in dynamic persistent environments
- Adaptation to environments (learning of policies) is interactive, not algorithmic

Multi-agent interaction in EC research

The two research areas (MAS and EC) intersect in research on:

- Swarm or ant computing
- Coevolution: Evolution of species whose instances interact in multi-agent systems
- Particle swarm optimization: Particles are candidate solutions to a problem in n-dimensional space, particles are accelerated through this space in relation to each other and to objective function
Keil Modeling indirect interaction

Outline
1. Relevant definitions
 - Algorithmic computation
 - Interactive computation
 - Multi-stream interaction
 - Direct vs. indirect interaction
2. Indirect interaction in nature and MAS research
3. Indirect interaction and adaptation in EC
4. Formal models of interaction
5. Our research goals

Contributions to the theory of interactive computing
- c-machine (Turing), finite transducer (Moore)
- Cybernetics: models of feedback systems (Wiener)
- Information theory/communication theory (Shannon)
- Concurrency with message passing: CSP (Hoare), CCS (Milner), π calculus (Milner)
- Recent models of sequential interaction:
 I/O Automata (Lynch), Abstract State Machines (Gurevich), Site Machines (van Leeuwen, Wiedermann)
- Interaction Machines and Persistent Turing Machine (Wegner, Goldin)
- Emerging intuition: Interaction is part of computation

Persistent Turing Machines
- A minimal extension of TMs expressing sequential interactive behavior (Goldin, I&C)
- A PTM is a 3-tape TM with
 - I/O as dynamically generated streams of interleaved inputs and outputs
 - TM executions (macrosteps) iterated
 - A persistent worktape, called a memory, preserved between macrosteps
- Example: automatic car

Stream behavior of PTMs
- The persistent stream language (PSL) of a PTM is
 the set of streams \(L \subseteq (\Sigma^* \times \Sigma^*)^\omega \) observable on it
- The set of all I/O streams over alphabet \(\Sigma \):
 \((\Sigma^* \times \Sigma^*)^\omega = \{ (a, x) \mid a \in (\Sigma^* \times \Sigma^*), x \in (\Sigma^* \times \Sigma^*)^\omega \} \)
- PSL is the set of all persistent stream languages
- Amnesic PTMs do not make use of their memory, i.e., are equivalent to TMs in that sense
- ASL: The set of amnesic stream languages
- Theorem: \(ASL \subseteq PSL \) (Goldin, Smolka, et al, I&C, 2004), hence PTMs are more expressive than TMs

The message-passing model of concurrency
- Due to Robin Milner: CCS, π Calculus; associated with theory of concurrency and with process algebra
- These models capture the notion of direct interaction by message passing
- Axiom of concurrency theory:
 interaction = message passing
 i.e., atomic communication of a message from one process to another (targeted send/receive)
- Shared variables are deemed processes

Limitations of the message-passing model
- Message passing does not support properties of indirect interaction: anonymity, asynchrony, space decoupling, non-intentionality, and late binding
- Embedded and situated systems aren’t supported
- Suppose agents \(A \) and \(B \) communicate via shared variable \(X \)
 - The message-passing model accounts for direct \(A \leftrightarrow X \) and \(B \leftrightarrow X \) interaction.
 - …but not between \(A \) and \(B \) via \(X \)
Keil Modeling indirect interaction

Outline

1. Relevant definitions
 - Algorithmic computation
 - Interactive computation
 - Multi-stream interaction
 - Direct vs. indirect interaction
2. Indirect interaction in nature and MAS research
3. Indirect interaction and adaptation in EC
4. Formal models of interaction
5. Our research goals

Research goals

- We propose to obtain formal results to establish some limitations of the message-passing model
- We seek an expressiveness result analogous to the one for sequential interaction by Goldin-Smolka et al
- Setting: A large system of simple agents
- We propose to use three proof approaches:
 - Formal behavioral specifications
 - Unscalability
 - Simulation asymmetry

Goal: formal specification of problems that entail indirect interaction

- We propose to find a class of useful missions or tasks that would require indirect interaction
- Setting: A large system of simple agents
- Initial idea: to look at insect stigmergy examples – would tasks be impossible without stigmergy?
- If indirect interaction is needed to meet these specs, then an adequate model must represent that interaction explicitly
- A tool: specification languages and notations

Goal: to show unscalability of message passing

- Motivation: As unscalable architectures in AI are brittle and will fail in realistic settings (R. Brooks), so for unscalable MAS architectures and models
- Hypothesis: As the number of agents rises asymptotically, either number of connections grows too fast, or else paths between agents become too long
- Other dimensions to show unscalability:
 - Synchronization vs. asynchrony
 - Centralized vs. decentralized storage

Goal: to show an asymmetric simulation relation

- ... between message-passing-based models and models based on indirect interaction
- Motivation: Simulation asymmetry would imply that current models are inadequate
- Hypothesis: Direct interaction cannot simulate indirect interaction in setting of large system of simple agents
- One possible simulation of direct interaction by indirect:
 - An agent puts a tuple into the shared environment
 - Tuple contains the both message and addresses
 - Recipient reads tuples that contain its ID

Summary

1. Common trends in EC and MAS research
2. A gap separates the practice and the theory of these fields
3. NFL Theorem does not apply in dynamic environments
4. Properties enabled by indirect interaction: anonymity, asynchrony, non-intentionality – models must support them
5. Goal: Expressiveness results showing the need for explicit models of indirect interaction;
6. Approaches:
 - show behavioral specifications that entail indir. inter.
 - show unscalability of message-passing models
 - show an asymmetric simulation relation between models of message-passing and indirect interaction.
Keil Modeling indirect interaction

References

References (cont’d)