2. Finite automata

1. Deterministic finite automata
2. Regular expressions
3. Nondeterministic finite automata
4. Non-regular languages
5. Lexical analysis

Inquiry

• What problems can be solved by computation?
• How does UNIX grep work?
• How do compilers work?
• What problems can simple state-transition systems solve?

Stephen Kleene, 1909-1994
Topic objective

Explain the relation between finite automata and regular expressions, proving related expressiveness and correctness results

Subtopic objectives

2.1a Construct a finite automaton**
2.1b Prove that an automaton accepts a given language**
2.1c Define a finite-state model other than the DFA
2.2 Give a regular expression for a FA*
2.3 Show expressiveness of finite automata**
2.4 Prove that a language is not regular
2.5 Describe how DFAs are used in compilation
1. Deterministic finite automata

• What is a language?
• A computation?
• A state?
• An automaton?
• What computations can looping state-transition systems model?

Subtopic objectives

2.1a Construct a finite automaton**
2.1b Prove that an automaton accepts a given language**
2.1c Define a finite-state model other than the DFA
Transition systems

- A transition system is a labeled digraph, where vertices denote state (memory), and labeled edges denote transitions

- Components:
 - Alphabet Σ (set of symbols)
 - State set (a state can be anything)
 - Transition function or relation (rules for going from one state to another)

- Models a process such as a computation

UML state diagrams

- Depict a process that transitions from state to state; e.g., academic courses
Some language-decision problems

- Some languages:
 - $1 \mid 0 \quad \{0, 1\}$
 - $(1 \mid 0) \quad \{11, 01\}$
 - $1^* \quad \{\lambda, 1, 11, \ldots\}$
 - $1^*0 \quad \{0, 10, 110, 1110, \ldots\}$
 - $0(1|0)^* \quad \{0, 00, 01, 000, 001, 010, 011, \ldots\}$

Q: Can a transition system accept strings in an infinite language?

DFAs are transition systems

- A transition system is a labeled digraph, where vertices denote state (memory), edges denote transitions and labels
- 1-state example:
 - 2-state example:

- DFA differs from random-access machine (RAM) model, in which state is a value assignment to a set of variables
Some simple DFAs

(a) \[\quad \]

(b) \[\quad \]

(c) \[\quad \]

(d) \[\quad \]

Note: “0,1” means “0 or 1”, or “(0+1)” in Hopcroft

JFLAP

- An environment for designing and testing automata
- Useful in topics 2-4 of this course
- Free download: http://www.jflap.org/
Theorem: Some DFAs accept infinite languages

- Proof: The DFA at right accepts \{0,1\}*, the infinite set of all strings over \{0,1\}

- \textit{Proof:} For any string \(x \) accepted by the DFA, \(x0 \) and \(x1 \) are accepted as well (just follow the transition back to the accepting state)

Formal definition of DFA

- A DFA is a 5-tuple \(\langle Q, \Sigma, \delta, q_0, F \rangle \) where
 - \(Q \) is a finite set of states
 - \(\Sigma \) is a finite alphabet
 - \(\delta: Q \times \Sigma \rightarrow Q \) is a state-transition function
 - \(q_0 \in Q \) is the starting state
 - \(F \) is the set of accepting states

- If the repeated application of \(\delta \) to the (state, symbol) pairs in a computation leaves the DFA in a state in \(F \), \textit{accept} the input; else \textit{reject}
Graph of a transition function

- A graph $G = (V, E)$ is a set of vertices and a set of ordered pairs of vertices; E is a relation on V
- If edges are labeled with symbols, and each edge from vertex u labeled with symbol a goes to a unique vertex v …
- … then the labeled graph denotes a transition function $\delta : V \times \Sigma \rightarrow V$

Reflexive transitive closure

- A relation or function may be applied over and over; for example, $f (f (f (x)))$
- The reflexive transitive closure of a function or relation is the set of values that can be obtained by applying the function in this way.
- Examples:
 - the reflexive transitive closure of \mathbb{N} under the addition operation is \mathbb{N}
 - $\delta^* : Q \times \Sigma^* \rightarrow Q$ maps from (state, string)
Language of a DFA

- For DFA M, the language of M, $L(M) = \{ x \in \Sigma^* | (\delta^*(q_0, x) = q') \land (q' \in F) \}$
- M accepts strings in $L(M)$, rejects all others
- …where Σ^* is the set of all strings over Σ, and for string x, $\delta^*(q_0, x)$ is the state reached after repeated applications of δ to states and to elements of x
- Example: $L(M)$ for M (below) is all bit strings that have a '1' followed by 0 or more '0's.

Example DFA

- This DFA accepts strings that start with any number of 1’s (possibly none), followed by a 0, followed by any number of (10)s, followed by any number of 0s
- That is, any string that ends in ‘0’
- Some elements of its language: 0, 10, 00, 100, 110, 010, 1010, 10100
Regular languages

- **Language**: a set of sequences over a finite alphabet of symbols

- **Regular language**: one whose elements are each accepted by some DFA (cf. subtopic 1.1)

- The following decision problems are equivalent:
 - Is sequence \(x \) in regular language \(L \)?
 - Is \(x \) accepted by a DFA \(A \), where \(L(A) = L \)?

- We write \(\mathcal{R}L \) for the set of regular languages

Theorem: Finite languages are regular

Proof by construction:

- For a finite language \(L \), construct a DFA in which each vertex has up to \(|\Sigma| \) out-transitions

- Transition paths form the tree corresponding to all the strings in \(L \)

- Edges corresponding to the last symbol of a word in \(L \) go to accepting states
Expressiveness of DFAs

- *Implication of previous theorem:* DFA model is *more expressive* than logic-circuit model, since some regular languages are infinite

- We will show a model later that has *equivalent* expressiveness (computing power) to DFAs, and other models that are *more* expressive

Minimal DFA for a RL

- *Theorem:* For any RL L, there exists a *unique** * DFA M s.t. $L(M) = L$ and M has no more states than any other DFA M' where $L(M') = L$ (Myhill-Nerode)

- There exists an algorithm that reduces a DFA to its minimal version

- The algorithm proceeds by finding indistinguishable states and merging them

* unique up to isomorphism (renaming of states)
Minimization example

In the DFA above, states q_1 and q_2 are indistinguishable.
The DFA below is minimal for the same language.

Finite transducers

- A finite-state transducer may have output symbols as part of its labels.
- We assume that input is fixed before computation starts.
- FTs are called Mealy and Moore machines.
- On a given input string, an FST outputs a string of the same length.
- Hence it is not an accepter, but performs transduction from one string to another.
Mealy machines

- **Definition:** a 6-tuple \(\langle Q, \Sigma, \Gamma, \delta, \text{out}, q_0 \rangle \) s.t.
 - \(Q \) is a set of states, \(q_0 \) is start state
 - \(\Sigma, \Gamma \) are finite input, output alphabets
 - \(\delta \) is a transition function \(Q \times \Sigma \to Q \)
 - \(\text{out} \) is an output function \(Q \times \Sigma \to \Gamma \)

- **Example (right)**
- **Question:** What functions on strings can Mealy machines compute?

Transducers and accepters

Theorem: Any computation of a function \(f: \{0, 1\}^* \to \{0, 1\}^n \) can be done by \(n \) accepters

Proof:
1. For \(i \leq n \), let \(L_i = \{ x \mid \text{bit } i \text{ of } f(x) \text{ is } 1 \} \)
2. Construct accepters \(M_{1..i} \) for \(L_{1..i} \) as follows.
3. \(M_i \) decides the \(i \)th bit of \(f(x) \) for any string \(x \).
4. Let \(P_i \) be the predicate computed by \(M_i \)
5. So \(f(x) = \text{Concat}_{i \leq n}(P_i(x)) \)
6. Hence \(f(x) \) is computable by \(M_{1..n} \)
Kripke structures

- Unlabeled transition system, used to diagram and reason about reactive systems
- To a Kripke structure corresponds an infinite computation tree reflecting all possible paths through the system

Markov models

- A Markov state machine or chain is a system with a finite number of observable states, and with probabilistic transitions between states
- Defined by initial state s_0, transition model $T(s, a, s')$, and reward function $R(s)$
- Example: weather at any location
Example: Weather

- Let states be \{sunny, cloudy, rainy\}
- Let transition probabilities be in labels
- First-order Markov model:

![Graphical representation of a Markov model with states sunny, cloudy, and rainy, and transition probabilities between them.]

2. Regular expressions

- What is *syntax*?
- Do RLs have a common syntax?
- How does wild-card search work?
- Can we prove that a given DFA accepts a given language?
2.2 Give a regular expression for a finite automaton*

Regular expressions

- Any regular language may be specified by a \textit{regular expression} using any combination of these operations:
 - Concatenation
 - Selection (\mid, $+$, \cup)
 - Iteration (\ast) (binds to immediate preceding symbol)
- Where a is any single symbol in Σ, and E, F are regular expressions, these are REs:
 $a \quad (E) \quad EF \quad E \mid F \quad E^\ast$
Example RE

• The language accepted by the DFA below is generated by the regular expression 1(0 | 1)*

• Note: Infinite languages are specified by * in REs and recognized using loops in DFAs

Regular expressions and languages

• A regular expression generates a language

• Examples (what are their DFAs?):
 • (01)* : all strings that repeat the string 01, zero or more times
 • 01* | 10* : all strings that either consist of a 0 followed by zero or more 1’s, or a 1 followed by zero or more 0’s

• Example: 01* | 00 is the regular expression denoting strings beginning 0, followed by any number of 1’s, or 0 followed by a single 0
Applications of regular expressions

- Regular expressions identify patterns, such as strings that begin with ‘M’ or consist of digits, possibly with a decimal point in the middle
- Patterns may guide search in databases, including in bioinformatics, where $\Sigma = \{A, C, G, T\}$ (amino acids)
- Lexical analysis of programs by compilers is guided by regular expressions

Complement of a language

- Complement of L is all strings not in L

Examples: Complement of Σ^* is \emptyset,
complement of 0^* is $(0+1)^* 1 (0+1)^*$

- Theorem: The complement of a regular language is regular.

- Proof: Construct a DFA that accepts all inputs not in L, starting with a DFA that accepts L; make all accepting states be non-accepting, all non-accepting states accepting
DFA → RE conversion

Cases:

- **Sequence** of states with transitions: Concatenate REs \((E_1E_2)\)
- **Branch** from one state to two or more others: \(E_1 + E_2 + \ldots + E_n\)
- **Loop** (transition from one state to the same or a preceding state): Star the RE for the path from destination of transition to its origin \((E^*)\)

Algorithm for DFA → RE

- **Observation**: Any state \(q\) of a DFA \(M\) may be associated with a regular expression that denotes the paths that take \(M\) from start state to \(q\)

- \(L(q_0) = \lambda\)
- \(L(q_1) = 00^*\)
- \(L(q_2) = 1(01)^*\)
- \(L(q_3) = 11(01)^*\)

- Reg. expr. for this DFA is \(L(q_1) \cup L(q_3)\)
Structural induction

- Many sets, including strings, trees, and formal languages, may be defined recursively
- Method for showing that recursively defined set S has property P:
 1. Show that $P(x)$ for each element of the base of S
 2. Show that for each recursive rule, applying the rule to an element that satisfies P yields an object that also satisfies P

Example of structural induction

For any graph $G = (V, E)$, $\Sigma_{v \in V} \delta(v) = 2|E|$ (sum of the degrees of vertices in a graph is twice number of edges.)

Proof:

- **Base**: $G = (\emptyset, \emptyset)$: $\Sigma_{v \in V} \delta(v) = 2|E| = 0$
- **Inductive**: To show that if for all graphs s.t. $|V| = n$, $\Sigma_{v \in V} \delta(v) = 2|E|$, then same where $|V| = n + 1$.
- For any graph, adding one vertex alone (with no edges) changes neither $\Sigma_{v \in V} \delta(v)$ nor E.
- Adding 1 edge, yielding $G' = (V, E')$, increases the degree of a participating vertex by one: $|E'| = |E| + 2$.
Proving correctness of DFAs

- We may use structural induction on the size of input strings to show that a given DFA accepts precisely a certain language.
- Example: M (right) accepts $L = 10^*$
- Base case: $1 \in L(M)$
- Induction: From accept state b, adding a 0 keeps string in L, whereas adding a 1 triggers rejection.

General form of assertion to be proven:
$$(\forall x \text{ s.t. } |x| = n) \ x \in L \iff x \in L(M) \Rightarrow$$
$$(\forall x \text{ s.t. } |x| = n+1) \ x \in L \iff x \in L(M)$$

Example proof of correctness

- Language specification: $n_1(x) = 1$
- Regular expression: 0^*10^*
- DFA:

Proof of correctness:
- $Base$: (a) $\lambda \not\in L(A)$, because left state rejects;
 (b) $1 \in L(A)$, because middle accepts
- $Induction$: 1 takes accepted string to reject state; 0 takes any string to same state.
3. Nondeterministic finite automata

- What is nondeterminism?
- Does it matter if a process is nondeterministic?

Subtopic objective

2.3 Show expressiveness of finite automata**
Definition of NFA model

- NFA \(A = \langle Q, \Sigma, \delta, q_0, F \rangle \), s.t.
 \(\delta: Q \times \Sigma \rightarrow 2^Q \) permits transitions to any of several states from a given state on a given symbol, and
- \(\delta \) may have \(\lambda \)-transitions (i.e., without input)
- A transition from \(q \) to \(q' \) on \(a \), with \(q, q' \in Q, a \in \Sigma \), denotes that the NFA can go from \(q \) to \(q' \) on \(a \)

NFA example

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{q_0, q_1}</td>
<td>{q_3}</td>
</tr>
<tr>
<td>(q_1)</td>
<td>{q_3}</td>
<td>{q_1, q_2}</td>
</tr>
<tr>
<td>(q_2)</td>
<td>{q_3}</td>
<td>{q_3}</td>
</tr>
<tr>
<td>(q_3)</td>
<td>{q_3}</td>
<td>{q_3}</td>
</tr>
</tbody>
</table>

Note: state \(q_3 \) (dungeon) is implicit
\(\lambda\)-closure

- We may consider any state \(q\) to have a language, i.e., \(L(q) = \{x \in \Sigma^* \mid \delta^*(q, x) \in F\}\)
- If \(q\) has a \(\lambda\) transition to \(r\), then \(L(r) \subseteq L(q)\), because any string can take \(M\) from \(r\) to the same states as from \(q\)
- \(\lambda\)-closure\((q) = \{q\} \cup \lambda\)-closure\((\{r \mid r \in \delta(q, \lambda)\})\) helps solve problem of hard to convert REs, e.g., \((00)^* \mid (0 \mid 1)^*\)

Uses for nondeterminism in theory work

- *Problem:* Some REs are hard to convert to DFAs, e.g., \(L = (0 \cup 1)^* 1\)
- *NFA solution:*
DFA → NFA

- *Theorem:* Every regular language is recognized by some NFA
- *Proof:* A DFA is by definition an NFA without nondeterministic transitions
- This is called an *immediate* or *trivial* proof

RE → NFA

- *Theorem:* For any regular expression, an NFA may be constructed that recognizes the same language
- *Proof (by construction):*
 - for concatenated parts of RE, a sequence of states
 - for “+”, a fork
 - for “*”, a transition to first state in starred part of RE
- *Example:* \((0 \mid 1)^* 1\) (strings that end in 1)
RE → NFA example

- RE: \((0 \mid 1)^*1\) (strings that end ‘1’)
- NFA:
 ![NFA Diagram]
- DFA:
 ![DFA Diagram]

NFA → DFA (subset construction)

- To construct a DFA \(M' = \langle Q', \Sigma, \delta', q_0', F' \rangle\) from an NFA \(M = \langle Q, \Sigma, \delta, q_0, F \rangle\) as follows:
 - let \(Q' = 2^Q\) (set of all subsets of \(Q\));
 - let \(q_0' = \{q_0\}\);
 - let \(F' = \) the set of states of \(M'\) that contain some state in \(F\)
- Then derive \(\delta'\) from \(\delta\):
 - merge all states with \(\lambda\)-transitions between them
 - and let \(\delta'(q, a) = \bigcup_{r \in q} \{ \delta(r, a) \}\) (the state of \(M'\) that is the set of all states of \(M\) to which there is a transition on \(a\) from some state in \(q\))
Intuition for the subset construction

- The DFA has states that are sets of NFA states, because the NFA transition function is from states to sets of states.
- \(\lambda \)-transitions mean that states involved in them are in effect equivalent, so they merge in the DFA \(M' \).
- \(\delta'(q, a) \) of DFA \(M' \) is the set of states the NFA \(M \) can go to from some state that is in \(q \) of DFA \(M' \).

NFA → DFA example

NFA \(M = \langle Q, \Sigma, \delta, q_0, F \rangle \), \(L(M) = 0^+1^+ \)

- \(\delta(q_0, 0) = q_0 \)
- \(\delta(q_0, 1) = q_1 \)
- \(\delta(q_1, 1) = q_2 \)

DFA \(M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle \), \(L(M') = 0^+1^+ \):

- \(\delta'({q_0}, 0) = \{ q_0, q_1 \} \)
- \(\delta'({q_0, q_1}, 1) = \{ q_1, q_2 \} \)
Subset construction example

- NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$

- $L(M) = (01)^*00$
- Construct DFA $M' = \langle Q', \Sigma, \delta', q_0', F' \rangle$

Significance of NFA \rightarrow DFA

- Every NFA can be converted to a DFA, and every DFA is an NFA
- This means that NFAs have the same computational power or expressiveness as DFAs (recognize the same languages)
- So the following are equivalent:
 - Some NFA recognizes language L
 - Some DFA recognizes L
 - L is regular
 - L is generated by a regular expression
2. Finite automata

Theorem: one accept state

- *Theorem:* For any DFA, there is an NFA with only one accepting state that recognizes the same language.
- *Proof:* Construct the NFA from the DFA, adding an accept state that has λ transitions from each accepting state of the DFA; make the DFA’s accepting states non-accept in the NFA.

RLs: closed under concatenation

- For languages L_1 and L_2, the concatenation L_1L_2 is $\{xz | x \in L_1, z \in L_2\}$
- *Theorem:* $(L_1, L_2 \in RL) \Rightarrow (L_1L_2 \in RL)$
- *Proof:* DFAs M_1 and M_2 may be concatenated using λ-transitions as follows:

![Diagram of NFA concatenation](image)

- This NFA recognizes the languages of M_1 and M_2, concatenated, $L(M_1) L(M_2)$
RLs: closed under union and star

Theorem: For regular languages, L, L_1 and L_2

a. $(L_1 \mid L_2)$ is regular (union)

b. $(L)^*$ is regular (Kleene star)

Proofs:

RLs: closed under intersection

• Theorem: $\text{Reg}(L_1, L_2) \Rightarrow \text{Reg}(L_1 \cap L_2)$

• Proof:

1. $L_1 \cap L_2 = \sim(\sim L_1 \cup \sim L_2)$ (De Morgan’s Law)

2. Let M_1 be a DFA that accepts $\sim L_1$

3. Let M_2 be a DFA that accepts $\sim L_2$

4. An NFA, M_3, accepts $(\sim L_1 \cup \sim L_2)$ (see previous slide)

5. Let M_4 be an NFA that accepts the complement of the language of M_3

6. M_4 accepts $L_1 \cap L_2$
Reverses of RLs are regular

Theorem: If L is regular, then the reverse of L, L^R (set of elements of L each spelled backwards), is regular

Proof: Construct an NFA:
1. Start with a one-accept-state DFA that accepts L
2. Reverse the directions of all transitions
3. Swap accepting and starting states
4. This NFA accepts L^R

4. Non-regular languages

- Are all languages regular?
- Can the DFA compute any predicate?
- What would we learn about the DFA model, if we found a non-regular language that a Java program could accept?
2. Finite automata

Subtopic objective

2.4 Prove that a language is not regular

The pumping lemma

- A property of infinite regular languages L:

 $$(\exists n_0) \left(\forall x \text{ s.t. } |x| > n_0 \right) (x \in L) \Rightarrow
 (\exists u, w \in \Sigma^*, v \in \Sigma^+)(x = uvw) \land (\forall k \in \mathbb{N})
 uv^kw \in L$$

- That is, any string in L can be expressed as the concatenation of three strings, the middle of which can be “pumped” any number of times with the result also in the language

- Example: In $0(01)^*1$, a (01) may be pumped

- Proof of lemma uses Pigeonhole Principle
Proof of Pumping Lemma

1. Consider RL L and DFA M, s.t. $L = L(M)$, $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, and L is infinite
2. Then for some x in L, $|x| > |Q|
3. So when M inputs x, M has to pass through some state q more than once

4. Hence there exists $n_0 \leq |Q|$ s.t. if $\delta^*(q_0, u) = q$, $\delta^*(q, w) = q_F$, $uvw \in L$, $|v| > 0$, and $|uvw| \geq n_0$, then $uv^kw \in L$ for any $k \in \mathbb{N}$

Example: 0^n1^n is not regular

Theorem: If $L = 0^n1^n$ then $L \not\in \mathcal{RL}$

Proof: By Pumping Lemma, if L is regular then $(\forall x \in L)$ $(\exists u, v, w)$ s.t. $(uvw = x \land |v| > 0 \land (\forall k) uv^kw \in L)$

Cases:
- If v were all 0’s then we could “pump” it with a large enough k so that there are more 0’s than 1’s so v is not all 0’s; similarly v can’t be all 1’s
- If v is 0’s and 1’s, then pumping even once produces a string not in L
- Hence no v can exist that satisfies the Pumping Lemma
- Therefore L is not regular
5. Lexical analysis

• What is a *lexicon*?
• What does a compiler do?
• How does one work?

Subtopic objective

2.5 Describe the use of DFAs in compilation
Regular expressions and UNIX

- Standard REs are extended by character classes, e.g., “.” (dot for any character); [a-z]; [abcd]
- UNIX search command `grep` (Global search for Regular Expression and Print) uses regular expressions
- UNIX has a lexical-analyzer generator, `lexx`

Lexical analysis

- Used by compilers, as part of syntactic analysis, to prepare for parsing
- AKA tokenization
- To recognize identifiers, numerals, operators, etc., implement a DFA in code
- State is stored in an integer variable, δ is implemented as a switch statement
- Upon recognizing a lexeme, return its lexical class and restart DFA with next character in source code
Lexical analyzers

- Compiler translates from higher-level language to assembler or machine language

- *Lexical analysis*
 - Finds *tokens*, indivisible items of code
 - Tokens are formed by simple rules
 - *Examples*: literals, operators, keywords, delimiters, identifiers
 - *Lexer* arranges tokens as an ordered list

- *Parsing* applies grammar rules to build tokens into a structure

Lexical analyzers

- Compiler translates from higher-level language to assembler or machine language

- *Lexical analysis*
 - Finds *tokens*, indivisible items of code
 - Tokens are formed by simple rules
 - *Examples*: literals, operators, keywords, delimiters, identifiers
 - *Lexer* arranges tokens as an ordered list

- *Parsing* applies grammar rules to build tokens into a structure
Lexer example: **identifier**

- ID = (__ | letter) (letter | digit | _)*
- DFA accepts for letter or underscore, or same followed by letter, underscore, or digit
- **Pseudocode:**

 \[
 i \gets 0, \quad q \gets 0
 \]

 if next char is letter or underscore

 \[
 q \gets 1 \quad i \gets i + 1
 \]

 else

 \[
 q \gets 2
 \]

 while next character is letter, underscore, or digit

 \[
 i \gets i + 1
 \]

 return \((q = 1)\)

Some lexical categories

- The lexical analysis of a program separates it into *atoms* or lexemes that cannot be further broken down, such as delimiters, keywords, IDs, operators, etc.
- These categories may be made an enumerated type:

  ```
  enum lex_categories {
    tkID, tkNum, tkStringLit, tkCharLit, tkLBrace, tkRBrace, 
    tkLParen, tkRParen, tkLBracket, tkRBracket, tkSemi, tkComma, 
    tkColon, tkPeriod, tkAddop, tkAsgnop, tkMulop, tkNot, tkOr, 
    tkAnd, tkRelop, tkScope, tkLess, tkGrtr, tkFinal, tkInt, 
    tkCase, tkChar, tkDouble, tkString, tkIf, tkSwitch, 
    tkWhile, tkFor, tkDo, tkElse, tkClass, tkPublic, tkEnum, 
    tkReturn, tkStatic, tkMain, tkVoid, };
  ```
References

See also *JFLAP* manual.