Topic 5: Random-access machines and μ-recursion

1. Random-access machines and the \mathcal{L} language
2. μ-recursive functions
3. The Church-Turing thesis

Models of algorithmic computation

$\text{TM}-$computable functions $= \text{RAM}-$computable functions $= \text{Recursively-definable functions}$

The Chomsky hierarchy

- Regular languages (accepted by DFAs)
- Context-free languages (accepted by PDAs)
- Recursive (Turing-decidable) sets
- All languages
1. Random-access machines and the S language

- Unlike transition-system-based automata, RAMs have addressable storage
- *Example:* Any microprocessor based system
- S, an assembler-like language, implements the RAM model
- Variables are labeled memory cells
- S computes any computable function on natural numbers

S language definition

- Identifiers (for any $i \in N$):
 - X_i input
 - Y_i output (initialized to 0)
 - Z_i local variables (initialized to 0)
 - L_i labels for instructions
- S has 3 instructions, for variables V
 with values $\in N$:
 - $V \leftarrow V + 1$
 - $V \leftarrow V \div 1$ (monus: $0 \div 1 = 0$)
 - if $V \neq 0$ goto L
Example program in \mathcal{S}

\[
[A] \quad Y \leftarrow Y + 1 \\
X \leftarrow \max(0, X - 1) \\
\text{if } X \neq 0 \text{ goto } A
\]

- The above program yields $Y = 1$ as output if input $X = 0$; otherwise $Y = X$
- Loop labeled A increments output Y while decrementing input X
- This program is close to implementing assignment $Y \leftarrow X$

Macros in \mathcal{S}

- Any function that can be computed in \mathcal{S} may be considered added to the language via macros
- Example: unconditional goto, goto L, is supported using
 \[
 Z \leftarrow Z + 1 \\
 \text{if } Z \neq 0 \text{ goto } L
 \]
- Jump-on-0 and variable assignment may be implemented by simple macros
Addition in \mathcal{S} using macro

\[\begin{align*}
[A] & \quad \text{if } X_2 = 0 \text{ goto } E \\
Y & \leftarrow X_1 \\
Y & \leftarrow Y + 1 \\
X_2 & \leftarrow X_2 - 1 \\
\text{goto } A
\end{align*}\]

- Implements $+$ via macro
- Some macros are used here
- Label E denotes exit
- **Powerful idea:** In similar ways, can implement \times, \div, $-$, etc.

Programs with programs as input

- **Problem:** \mathcal{S}’s RAM target machine computes only with natural numbers
- **Solution:** By Gödelization, any string x may be encoded as a unique Gödel number, $\#(x)$
- Any number n in \mathbb{N} may be converted to the corresponding string, including an \mathcal{S} program $P = \mathcal{S}(n)$ with $n = \#(P)$
Gödelization

- Let \(x_i \) be the \(i \)th symbol in a program (IF, X, +, etc.)
- Let \(k_i \) be \(x_i \)'s lexical position in the vocabulary of \(\mathcal{S} \)
- For program \(P \) with \(n \) symbols, the Gödel number, \(\#(P) \), is the product of \(n \) prime numbers \(p_i, \ 0 < i \leq n \ (2, 3, 5, \text{etc.}) \), each \(p_i \) raised to the \(k_i \) power
- Gödel used the same concept to encode assertions and proofs

Universal programs

- Consider a program \(U \) in \(\mathcal{S} \) that accepts inputs \(\#(P), x \), decoding \(\#(P) \) to \(P \) and simulates program \(P \) with input \(x \)
- \(U \) can be constructed. Just write a simulator for the RAM that executes \(\mathcal{S} \) code
- \(U \) is called a universal program
- Examples: compilers, interpreters, virtual machines
Halting problem w.r.t. \$S\$

- Define function \$HALT(x,y)\$ as:
 - \(\text{True} \iff \text{program } S(x) \text{ eventually halts on input } y\)
- **Theorem**: \(HALT(x,y)\) is undecidable
- **Proof**: Assume \(HALT(x,y)\) is decidable, so that the subroutine \(Halt\) decides it
 - Construct \(S\) program \(S\) as follows using a program that computes \(HALT\):

 \[\text{[A] If } \text{Halt}(X, X) \text{ goto A}\]
 - So for any \(x\), \(Halt(x, #(S)) \iff \neg HALT(x, x)\)
 - Now let \(x = #(S)\). Then \(Halt(#(S), #(S)) \iff \neg HALT(#(S), #(S))\), a contradiction
 - Therefore \(HALT(x,y)\) is undecidable

Cantor’s, Turing’s, and slide 11’s proofs

- Set up a table with \(y\) axis for programs \(0, 1, 2, \ldots\), and \(x\) axis for inputs \(0, 1, 2, \ldots\)
- Entries express values of \(\neg HALTS(P_y, x)\)
- Note that the diagonal, \(P_y(y)\), is the bitwise negation of the behavior of program \(S\) above
- Hence whatever program \(S\) is, its behavior on input \#\(S\) is the opposite of its behavior according to the table
- Hence there is no program \(S\) described
2. μ-recursive functions

- Related to lambda calculus (Church)
- Define:
 - Primitive recursive functions
 - Minimalization and μ recursion
- Equivalence of μ recursion with TMs, RAMs
- Results are due to K. Gödel, S. Kleene

A recurrence may define a function algorithmically

\[\text{sum} \ (a, b) = \begin{cases} a & \text{if } b = 0 \\ 1 + \text{sum} \ (a, b - 1) & \text{otherwise} \end{cases} \]

\[\text{product} \ (a, b) = \begin{cases} 0 & \text{if } b = 0 \\ a + \text{product} \ (a, b - 1) & \text{otherwise} \end{cases} \]

\[\text{factorial} \ (n) = \begin{cases} 1 & \text{if } n \leq 1 \\ n \times \text{factorial} \ (n - 1) & \text{otherwise} \end{cases} \]
Basic primitive recursive functions

- \(\text{zero}(x) = 0 \)
- \(\text{succ}(x) = x + 1 \)
- \(\text{pred}(x) = x - 1 \) for \(x > 0 \)
- \(\text{proj}_k(x_1, \ldots, x_n) = x_k \)

The above functions are computable by simple \(S \)-language programs and Turing machines.

Composition of primitive recursive functions

Definition: If \(h(x) = f(g(x)) \) then \(h \) is said to be obtained from \(f \) and \(g \) by composition.

Theorem: If \(f \) and \(g \) are \(S \)-computable, and \(h \) is obtained from \(f \) and \(g \) by composition, then \(h \) is \(S \)-computable.

Proof: The following program in \(S \) computes \(h(x) \):

\[
\begin{align*}
Z & \leftarrow g(X) \\
Y & \leftarrow f(Z)
\end{align*}
\]
5. Random access machines and \(\mu \)-recursion

Primitive recursion

- **Definition:** With \(k \) fixed, define

 \[
 h(0) = k \\
 h(x+1) = g(x, h(x)) \quad \text{for all } x \geq 0
 \]

 Then \(h \) is said to be obtained from \(g \) by *primitive recursion*

- **Example:**

 \[
 \text{factorial}(0) = 1 \\
 \text{factorial}(x+1) = g(x, \text{factorial}(x))
 \]

 where \(g(x, y) = (x+1)y \)

 Thus \(\text{factorial} \) is obtained from multiplication by primitive recursion

Computability of primitive recursive functions

- **Theorem:** If \(g \) is \(\mathcal{S} \)-computable and \(h \) is obtained from \(g \) by primitive recursion, then \(h \) is \(\mathcal{S} \)-computable

- **Proof:** The program in \(\mathcal{S} \) on the next slide computes \(h(x) \) where

 \[
 h(0) = k \\
 h(x+1) = g(x, h(x)) \quad \text{for all } x > 0
 \]
Computability of primitive recursive functions, cont’d

\[
Y \leftarrow k \\
\text{[A]} \quad \text{if } X = 0 \text{ goto } E \\
\quad Y \leftarrow g(Z, Y) \\
\quad Z \leftarrow Z + 1 \\
\quad X \leftarrow X - 1 \\
\text{goto } A
\]

Discussion: \(Y \) gets value of \(h(0) \), then \(h(1) \), \(h(2) \), etc., up to \(h(x) \)

Minimalization

- Let \(\text{min}_y (P(x_1, \ldots , x_n, y)) \) be the smallest value of \(y \) such that \(P(x_1, \ldots , x_n, y) \) is true
- Proper minimalization is applied when the function \(\text{min}_y (P(x_1, \ldots , x_n, y)) \) is total
- Examples:
 - Find shortest Hamiltonian path in a graph
 - Find smallest prime number that has “00000” in its binary expression
 - Find the shortest C program that outputs its own code in fewer than 1 million clock ticks
μ-recursive functions

Define μ (mu), or minimalization, as follows:

\[\mu y (f(x_1, x_2)) = \min \{ y \mid f(x_1, x_2) = 0 \} \]

Definition: The μ-recursive functions are the primitive recursive functions and functions constructible from PR functions by application of minimalization.

Theorem: Function \[\mu y (f(x_1, x_2)) \] is \(S \)-computable iff \(f \) is μ-recursive

Proof: If \(f(x,y) \) is computable, then an \(S \) program also exists that increments \(y \) until condition \(f(x,y) = 0 \) is satisfied.

3. The Church-Turing thesis

- Three models of algorithmic computation are equivalent: TMs, RAM with \(S \) language, and μ-recursive functions

- Shown: Any μ-recursive function is computable by some \(S \)-language program

- To show by construction:
 - Any \(S \)-language program computes a μ-recursive function
 - TM ↔ \(S \)-language program (Turing, 1937)

- Church-Turing Thesis: These models capture the intuitive notion of algorithmic computation
5. Random access machines and \(\mu \)-recursion

TMs, RAMs compute same fns

TM \(\rightarrow \) RAM

From TM \(M \), construct a program in \(S \) that simulates \(M \), implementing states, tape, and transition function.

RAM \(\rightarrow \) TM

Given any program in \(S \), construct 4-tape TM:

- Tape 1 represents memory
- Tape 2 is program counter
- Tape 3 stores memory address or contents
- Tape 4 stores input

\(\mu \)-recursion and pseudocode compute the same functions

Proof sketch:

- A recurrence and an equivalent *while* loop may be easily constructed for any function computable by a single loop.
- Nested *while* loops and nested recurrences may be written as needed.
- To test for minimal value of second parameter, test for all values starting at 0.
References

