Equivalence of two-tape and one-tape Turing machines

Recall that a multi-tape TM, such as a two-tape one, is a TM with a single transition function that maps from the state and the \(k \) symbols read on the \(k \) tapes to a new state and \(k \) operations of writing to a tape or moving left or right on it.

Theorem: Two-tape TMs and one-tape TMs accept the same set of languages.

Proof:

1. \((1 \rightarrow 2)\) Given a one-tape TM \(M \), construct a two-tape TM that is identical to the one-tape one except that its transition function has provision for mappings from inputs and to actions on the second tape, and all these mappings are null.

2. \((2 \rightarrow 1)\) Given two-tape TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}) \), construct TM \(M' = (Q', \Sigma', \Gamma', \delta', q_0', q_{acc}, q_{rej}) \), as follows.

 Each tape cell stores a four-part symbol, two parts of which are the symbols on the two-tape machine’s tape, and two of which are markers \(\mu \) for the tape head locations.

3. Hence the set of composite symbols readable on the tape of \(M' \) is:

 \[
 \Sigma' \cup \Gamma' = (\Sigma \cup \Gamma)^2 \times \{ \mu \}^2.
 \]

4. At each computation step, \(M' \) scans the tape for the composite symbol containing \(M' \)’s tape-1 marker, scans the tape for \(M' \)’s tape-2 marker, generating the same actions as \(M \) would generate but executing them by changing components of the composite symbols on the single tape of \(M' \). In this way \(M' \) simulates \(M \) in lock step.
