4. Turing machines and computability

1. Turing machines
2. Turing decidability
3. Undecidability of the Halting Problem
4. Undecidable problems and reducibility

Inquiry

- What do Turing machines tell us about computing?
- How do TMs help a software engineer?
- Can transition systems compute functions on strings and natural numbers?
Topic objective

Define computability, showing the expressiveness and limitations of the Turing machine

Subtopic objectives

4.1 Describe the Turing-machine**

4.2a Show that a problem is decidable*

4.2b Show expressiveness of the TM model*

4.3a Describe the Halting Problem and related proof*

4.3b Show that a problem is undecidable

4.4 Explain the notion of reducibility of problems
1. Turing machines

- Can a state-transition system with infinite two-way tape solve problems a PDA cannot?
- How can arithmetic operators be computed with transition systems?
- Is there a way to enhance the TM model?
- Can a simple TM emulate a complex one?

Subtopic objective

4.1 Describe the Turing machine**
Not all decidable sets are CF

- What class of device accepts $L = \{xx | x \in \Sigma^*\}$?
 (strings that consist of the same substring repeated twice)
- L is not context free, is not recognized by any PDA (provable by use of Pumping Lemma for CFLs)
- Clearly L is decidable by some algorithm
- What change to a PDA would allow solving this problem?

Turing’s model of computation

- Equivalent to the notion of an algorithm
- Developed (1936) to solve a famous unsolved problem in logic
- Based on idea of a human “computer” with paper and pencil
- Helps us capture essence and limits of algorithmic computing
- Enabled invention of general-purpose computers
The Turing machine

- Augments DFA with a two-way read/write tape with infinite capacity
- *Operations*: tape head reads a symbol at current location on paper, moves left or right, writes symbol at current location
- Next action is looked up in *transition table* based on current input and “state of mind” of computer
- Machine halts when a it enters a “halting” (accept or reject) state

Example: negater TM

- The TM above reads one bit, writes its logical negation to the tape, and halts
- Alphabet $\Sigma = \{0, 1\}$
- State set $Q = \{ q_0, q_1 \}$
- Transition function $\delta =$ \{(q\(_0\), 0), (q\(_1\), 1)\}, \{(q\(_0\), 1), (q\(_1\), 0)\}\}
Definition of TM

- **Turing machine:**
 \[M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle \]
 where \(\Sigma \) and \(\Gamma \) are *input* and *tape* alphabets

- **Transition function** \(\delta \):
 \[Q \times (\Sigma \cup \{\#\} \cup \Gamma) \rightarrow Q \times (\Sigma \cup \Gamma \cup \{\#', L, R\}) \]
 where \(L, R \) denote left or right moves

- Tape is infinite in both directions
- Tape head starts at leftmost nonblank cell
- First blank to right of a symbol in \(\Sigma \) has infinitely many blanks to its right

Accepter and transducer TMs

- **Accepter TMs** are like DFAs and PDAs in that according to the final state, an accepter *accepts* or *rejects* input
- Unlike DFAs and PDAs, TMs read tape rather than consuming input; hence may loop infinitely
- **Transducer TMs** compute functions \(\phi : \Sigma^* \rightarrow \Sigma^* \), where the return value (output) is the value left on the tape at the end of the computation
Example: unary incrementer

- Given input of a series of \(n \) 1’s on tape, this TM will leave \((n + 1) \) 1’s as output
- \(\Sigma = \{ 1 \} \)
- \(Q = \{ q_0, q_{\text{accept}} \} \)
- \(\delta = \{ \langle (q_0, 1), (q_0, \text{R}) \rangle, \langle (q_0, \text{#}), (q_{\text{accept}}, 1) \rangle \} \)

Unary adder

- Reads two numbers with “+” between
- Replaces last “1” with a blank
- Example: \(11 + 111 \rightarrow 11111 \)
4. Turing machines and computability

Binary incrementer

0, 1 → R
0, ‘#’ → 1

q₀

‘#’ → L

q₁

1 → 0

q₂

0 → L

q₃

1. Scan to right, then step left once
2. While input is 1
 write 0 and move left
3. Read 0 or ‘\0’
4. Write 1 and accept

Decision and transduction

- A *decision problem* requires *yes/no* responses to input
- Hence it is also known as a *language-recognition* problem
- A *transduction* computation produces a *string* as output
- Hence its solution is the computation of a function \(\Sigma^* \rightarrow \Sigma^* \) (equivalent to \(\mathbb{N} \rightarrow \mathbb{N} \))
- We speak of *decidable languages* (problems) or *computable functions*
TM computations and configurations

- A **TM configuration** is a snapshot of the TM’s components at an instant in time
- A **TM computation** is a sequence of configurations observable under δ
- A computation that enters q_{acc} or q_{rej} is said to halt

TM configurations

- **Configuration** $(q, t_{\text{left}}, t_{\text{head}}, t_{\text{right}})$: state; tape contents to left of head; symbol at head; contents to right of head
- The assertion that configuration $C = (q, x, a, y)$ of TM M yields configuration $C' = (q', w, b, z)$ in one step is written $C \Rightarrow_M C'$
- Intuitively, $C \Rightarrow_M C'$ means that from configuration C, application of $\delta(q, t_{\text{head}})$ yields configuration C'
Transitions between configurations

- When \(C = (q, x, a, y) \) and \(C' = (q', w, b, z) \),
 \(C \Rightarrow_M C' \), iff \(\delta(q, t_{head}) = \)
 - \((q', b)\) and \(w = x, z = y \), or
 - \((q', L)\) and \(w = \text{left}(x, \text{length}(x) - 1) \),
 \(b = \text{right}(x, 1), z = ay \), or
 - \((q', R)\) and \(w = xa, b = \text{left}(y, 1) \),
 \(z = \text{right}(y, \text{length}(y) - 1) \)

- Intuitively, under \(\delta \) either \(b \) replaces \(a \), or else the tape head moves left or right.

TM computations

- A *computation* is a sequence of configurations \(C_0, C_1, \ldots, C_n \), where \((\forall i < n) \ C_i \Rightarrow_M C_{i+1} \)
- By convention that input is initial contents of tape and output is final contents, a TM computes a function \(\phi : \Sigma^* \rightarrow \Sigma^* \)
- Tape is erased between computations; hence \(C_0 = (q_0, \lambda, x[1], \text{right}(x, \text{length}(x) - 1)) \) where \(x \) is input
- A TM that eventually halts on all inputs computes a *total* function; otherwise \(\phi \) is *partial*.
TMs compute partial functions

- Let $\phi_M(x)$ be the string left on the tape, after M halts, on input x
- Consider TM M at right:
 $$\phi_M(x) = \begin{cases} x & \text{if } x[1] = 1 \\ \uparrow & \text{otherwise} \end{cases}$$
- M computes a partial but not total function; i.e., $\phi_M(x)$ is undefined for some x
- A TM that always halts computes a total function

TM simulation with JFLAP

- JFLAP is Java software that simulates automata
- It has a graphical user interface
- You may test your designs with it
- http://www.jflap.org/
2. Turing decidability

- What languages (problems) are decidable (solvable) with some TM?
- What functions are TM computable?
- What are the limits of the TM’s expressiveness?

Subtopic objectives

4.2a Show that a problem is decidable*

4.2b Show expressiveness of the TM model*
Computable functions

- Given TM M, $x \in \Sigma^*$, let $\phi_M(x)$ denote the tape contents of M after a halting computation with input x.
- Given function $f : \Sigma^* \to \Sigma^*$, M is said to compute f iff for all x in $\text{Dom}(f)$, M eventually halts on x and outputs $f(x)$, while for all other x, M hangs.
- Function f is called Turing computable (recursive) if there is a TM M that computes f.

Decidable languages

- Language or problem L is said to be decidable (recursive) if some TM exists that
 - accepts all strings in L (i.e., halts in state q_{acc}) and
 - rejects all other strings (i.e., halts in state q_{rej}).
Some TM-computable functions

- **Theorem**: constant, successor, predecessor, projection functions are TM computable
- **Constant** function \(f(x) = k \) is computed by a TM that ignores its input and writes \(k \) 1s
- **Successor (predecessor)**: TM steps to right-most 1, writes an additional 1 (deletes last 1)
- **Projection**: \(f_k(x_1, \ldots, x_n) = x_k \) is computed by a TM that erases all values before and after the \(k^{th} \)
Regular languages are decidable

Theorem: If L is regular, then L is recursive

Proof (by construction, defining TM M):
1. Let A be a DFA that accepts L
2. M has A’s states and transition function, modified to change labels for every $a \in \Sigma$ to (a, R), scanning the tape to the right
3. Add states, q_{accept} and q_{reject}
4. For each accepting state of A, add to M an edge (‘#’, ‘#’) that goes from that state to q_{accept}; for each other add edge (‘#’, ‘#’) to q_{reject}
5. Thus M accepts exactly the strings in L

Theorem: CFLs are decidable

Proof:
1. Let PDA A be an acceptor of L.
2. Construct 2-tape TM M from A as follows:
 - $Q_M = Q_A$, $\delta_M = \delta_A$ except as follows
 - For every stack-popping operation of A, let M travel to rightmost cell of tape 2, reading it and replacing it with ‘#’;
 - simulate push by appending symbol at rightmost cell
3. Then M simulates A and accepts L
Algorithmically decidable properties of PDAs, CFGs

- Given PDA A, whether A will accept a string (i.e., $x \in L(A)$) is decidable
- Given CFG G, there exist algorithms to decide the following about its language:
 - $(x \in L(G))$
 - $L(G) = \emptyset$
 - $L(G)$ is finite

A binary encoding for any TM

- For TM $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, F)$, assign integers to states q, symbols X, directions D
- Encode transition rule $\delta(q_0, X_j) = (q_k, X_l, D_m)$ as $c_n = 0_i10_j10_k10_l10_m$
- Zeroes express integers in unary; ones are delimiters
- Encode the set of all transition rules as $c_11 \ c_211 \ c_311\ldots$, using “11” as delimiter
- Now each TM has a binary representation; hence can be denoted by a natural number
Universal Turing machines

• Suppose TM U takes as inputs a pair:
 - $(M),$ encoding of M;
 - $x \in \Sigma^*$, an input to TM M
• Then for all inputs (M, x), U outputs what M would output on input x
• Then U is called a universal Turing machine
• Example: Any general-purpose stored-program computer is equivalent to a universal TM
• Theorem: A universal TM exists

Multitape TMs

• For k-tape TM, use
 $$\delta : Q \times (\Sigma \cup \Gamma)^k \rightarrow Q \times (\Sigma \cup \Gamma \cup \{L, R\})^k$$
• Theorem: For any k-tape TM M_k, an equivalent single-tape TM M exists
• Proof sketch: construct M to simulate M_k
 – M’s tape contains contents of all M_k’s tapes, delimited by blanks (‘#’)
 – k head locations on M_k are denoted on M by special symbols using an alphabet k times as large as Γ (e.g., $a, b, \ldots, a, b, \ldots$)
Linear bounded automata

- LBA: TM restricted to tape space occupied by input or proportional to size of input
- LBAs accept a strict superset of CFLs and a strict subset of decidable language accepted by TMs
- LBA-accepted languages are generated by unrestricted grammars

Randomized TMs

- *Tapes*: input, random, scratch
- *Random tape* is pre-written with infinitely many random bits; alternatively a random bit is written whenever a new cell is accessed
- *Example use*: to execute Quicksort, choose pivot location randomly
Is an infinite-tape model realistic?

- **Arguments:**
 - No computer system can simulate a TM because all actual systems are finite
 - Likewise, no system can operate on unrestricted data values in Σ^* or \mathbb{N}, because storage is finite in the real world
- **Counter arguments:**
 - Systems are arbitrarily expandable in storage, may store and access data remotely
 - No TM computation ever accesses infinite data

TM subroutines

- TMs may implement *subroutines* by grouping states and transitions with a destination state to “return” to at the end of the subroutine execution
- Calls from different states may be implemented by copying, having a different destination/return state
Nondeterministic TMs

- An NTM is a TM, except that for each state-symbol pair \((q, x)\), \(\delta(q, x)\) is a set of values \((q', y, \text{direction})\)
- **Theorem:** \(\{L(M) \mid M \text{ is an NTM}\} = \{L(M) \mid M \text{ is a DTM}\}\)
- **Proof:** Simulate an NTM deterministically on a multi-tape DTM by copying all configurations as \(\delta\) generates them, to right end of one tape; process all those configurations with \(\delta\), halting if a configuration is in halt state

Restricted TMs

Theorem: The following are equally expressive as DTMs with infinite tape:

- **TMs with semi-infinite tape**, i.e., tape that is infinite in one direction, and that don’t write blanks
- **2-stack machines** that read input from tape left to right and perform stack operations
- **2-counter machines** that replace stack or tape with two numeric registers
3. Undecidability of the Halting Problem

- What can we know about a TM’s behavior by looking at its structure?
- Can software be designed that tells what a program does in all cases?
- Are there problems that have no algorithmic solutions?

Subtopic outcome

4.3a Describe the Halting Problem and related proof*
4.3b Show that a problem is undecidable
Limits of TMs

- Some problems are not decidable, e.g., whether a TM halts on a given input
- **Goal**: to find the limits of algorithmic computation, i.e., the computable functions
- **Highest result**: Nothing interesting about the language accepted by an arbitrary TM or program can be determined by looking at it

The Halting Problem

- Consider the decision problem or language $HALT$, consisting of the set of pairs (M,x) s.t. the TM with description M halts on input x
- Is there a TM that decides $HALT$?
Theorem: HALT is undecidable

Proof:
1. Suppose HALT is decidable.
2. Then construct TM S from HALT-decider H, where S makes a copy of its input M, feeds M and M to H, loops forever if $\phi_H(M,M)\downarrow$, halts if $\phi_H(M,M)\uparrow$.
3. Consider whether S halts on input S. If $\phi_S(S)\downarrow$ then $\phi_S(S)\uparrow$ and conversely -- a contradiction.
4. Since S is clearly constructible except for component H, therefore H cannot be constructed.
5. Hence HALT is undecidable.

Cantor’s and Turing’s proofs

- Consider an infinite table listing inputs x across the top and TMs M down the side.
- The entries tell whether M halts on x.
- Consider TM S that is designed to halt if its input is a TM that hangs on its own description and to hang if it halts.
- The behavior of S is the bitwise negation of the diagonal of our table; but by definition no entry in the table can have this behavior (see Cantor proof).
- Hence no TM M can detect halting behavior.
4. Undecidable problems and reducibility

- Is the problem of whether a TM ever halts on any input decidable?
- Is the output of a TM on no input computable from its representation?
- Are there any behaviors of TMs that can be determined with certainty by examining the TM’s representation?

Subtopic objective

4.4 Explain the notion of reducibility of problems
Reducibility

• Problem B is reducible to problem A iff a solution to A enables a solution to B
• Intuitively, B is at least as hard as A
• Example: multiplication is reducible to addition
• Hence we can build a multiplying machine out of an adding machine

Uses for reductions

• Suppose that, with a machine that solves problem A, plus a machine or module C, we can build a machine that solves problem B
• What if we know that B, reducible to A, is unsolvable? Then we know that A is unsolvable
• Example: By showing that the Halting Problem is reducible to problem P, we can show that P is undecidable too
Hardwiring a TM

- Any TM M can be hardwired to a given input, x, i.e., converted to M_x that ignores its input and outputs $\phi_M(x)$

- Let HW be a TM that performs this conversion, by generating a description of a TM M_x that discards its input and replaces it with x

Halt-on-blank

- Problem HB: Decide whether input is in $\{ M \mid M$ is a TM that halts on input λ (blank) $\}$
- Using HW, $HALT(M, x)$ is reducible to HB:

- **Theorem:** Problem HB is undecidable
- **Proof:** HB is reducible to $HALT$ because H can be constructed from $Halt-on-Blank$; but H cannot exist, so HB solver cannot exist
Halting on all inputs

- Let $\text{HALT-ALWAYS}(M)$ be the assertion that TM M halts on all inputs
- **Theorem:** HALT-ALWAYS is undecidable
- **Proof:** The following TM decides the undecidable halting problem for blank input (HB)

![Diagram]

- …where the preprocessor produces description of TM M_λ that simulates M running with blank input

Undecidability of TM behavior

- Not only is the problem of deciding whether a given program halts uncomputable…
- …but also no programs exist to decide any useful (nontrivial) property of programs
- By “nontrivial” we mean any behavioral property that holds for some but not all programs
- **Examples:**
 - Is $L(M)$ infinite? Regular? CF?
 - Is x in $L(M)$?
 - Is $L(M_1)$ a subset of $L(M_2)$
Rice’s Theorem

Thm: For any nontrivial class \(C \) of r.e. languages (e.g., decidable sets), and any TM \(M \), \((L(M) \in C)\) is undecidable (all interesting behavioral properties of TMs are undecidable).

Proof:
1. Suppose \((L \in C)\) were decidable.
2. Then some program \(L\text{-in-}C \) decides this problem.

Rice theorem proof, ii

3. Note that TM generator \(SG_L \) is constructible, generating from TM \(Q \) and \(L \)-acceptor \(M_L \) a TM \(M_{Q,L} \), that loops forever if \(Q \) hangs, otherwise tells whether its input is in \(L \).
4. Hence \(L(M_{Q,L}) = L \) iff \(Q \) halts.
Rice theorem proof, iii

5. Then construct from S_{GL} and L-in-C the following TM:

6. But this TM decides the *Halt-always* problem, which is undecidable.

7. Hence L-in-C is undecidable.

Undecidable properties of PDAs and CFGs

• Given PDAs A_1 and A_2, $(L(A_1) = L(A_2))$ is algorithmically undecidable
• Given CFG G, these are undecidable:
 - the complement of $L(G)$ is CF
 - G is ambiguous
 - $L(G)$ is regular; $L(G) \supseteq L$ given RL L
• Given CFGs G_1 and G_2, it is undecidable whether $(L(G_1) = \subseteq L(G_2))$;
 - $L(G_1) \cap L(G_2)$ is CF) is undecidable
Undecidable problems about context-free grammars

Theorem: The following are undecidable for CFGs G, G_1, G_2, regular expression R:

- $L(G) = \Sigma^*$
- $L(G_1) \cap L(G_2) = \emptyset$
- $L(G_1) = L(G_2)$, $L(G_1) \subseteq L(G_2)$
- $L(G) = L(R)$, $L(R) \subseteq L(G)$

Proofs: Post’s correspondence problems is reducible to these

Post’s correspondence problem

- It is a puzzle about pairs of lists of strings:
 (w_1, w_2, \ldots, w_k) and (x_1, x_2, \ldots, x_k)
- Problem: Does an index sequence (i_1, i_2, \ldots, i_m) exist, s.t. $(w_{i_1}, w_{i_2}, \ldots, w_{i_m})$ and $(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$?
- Example: $w = (1,0,10), x = (01,1,0)$.
 Solution: $i = (2, 1, 3)$
- Example: $w = (1,0), x = (10,1)$. No solution
- Theorem: PCP is undecidable
- Proof: HALT is reducible to PCP
How the decidability question arose

- Mathematicians around 1900 sought to place all mathematics on a firm logical basis
- David Hilbert posed the *Entscheidungs-problem* (decision problem): Algorithmically determine the truth or falsehood of *any* logical assertion about numbers
- In 1936, Alan Turing proposed the TM as a formal model of computation to address this problem

References

