Finite transducers

David Keil
October 30, 2002

Definition

A *Mealy machine* is a 6-tuple \(\langle Q, \Sigma, \Gamma, \delta, \text{out}, q_0 \rangle \) where

- \(Q \) is a set of states, \(\Sigma \) a finite input alphabet, \(\delta \) a transition function, \(q_0 \) a start state as with DFAs
- \(\Gamma \) is a finite output alphabet
- \(\text{out} \) is an output function \(Q \times \Sigma \to \Gamma \)
- There is no final state because the transducer does not halt

Stream I/O

- Transducers such as Mealy machines model interactive devices such as ICs, controllers, etc.
- A Mealy machine computes a function \(\Sigma^\infty \to \Gamma^\infty \) where:
 \[\Sigma^\infty = \{ ax \mid a \in \Sigma, x \in \Sigma^\infty \} \]
 \[\Gamma^\infty = \{ ax \mid a \in \Gamma, x \in \Gamma^\infty \} \]
- \(\Sigma^\infty \) is the set of *streams over* \(\Sigma \)

Example: soda machine

- Inputs (left side of labels): \(\{ Q, $1 \} \)
- Outputs (right side of labels): \(\{ “25”, “50”, “75”, [soda] \} \)

Example: digital clock

- Inputs: \{ tick \}
- Outputs: \(\{ "12:00:00", "12:00:01"… \} \)
- One state per time value
- With alarm, \((24 \times 60 \times 60)^2 \) states

Other examples:

- Calculator
- Microprocessor
- Memory chip
- Any digital control device

Related ideas

- Transducers were once called “sequential machines” and were part of Curriculum 68, the first ACM CS curriculum
- Not part of standard theory texts today
- Related areas:
 - Markov decision processes,
 - model checking of reactive systems,
 - temporal logic