Teach What You Do: Providing an Authentic Mathematical Experience in an Introduction to Proofs Class

Clark Wells

Grand Valley State University

JMM, January 16, 2014
What is Math?

Math is about more than writing proofs. It is about

- exploring
- looking for patterns
- guessing
- making mistakes
- learning about universal truths
What is Math?

Math is about more than writing proofs. It is about
 ◀ exploring
 ◀ looking for patterns
 ◀ guessing
 ◀ making mistakes
 ◀ learning about universal truths
What is Math?

Math is about more than writing proofs. It is about

- exploring
- looking for patterns
What is Math?

Math is about more than writing proofs. It is about

- exploring
- looking for patterns
- guessing
What is Math?

Math is about more than writing proofs. It is about
- exploring
- looking for patterns
- guessing
- making mistakes
What is Math?

Math is about more than writing proofs. It is about

- exploring
- looking for patterns
- guessing
- making mistakes
- learning about universal truths
A Bridge to What?

A bridge course should prepare students to succeed in mathematics. That means we need to prepare them to succeed in

- exploring
- looking for patterns
- guessing
- making mistakes
- learning about universal truths
A Bridge to What?

A bridge course should prepare students to succeed in mathematics. That means we need to prepare them to succeed in

- exploring
A Bridge to What?

A bridge course should prepare students to succeed in mathematics. That means we need to prepare them to succeed in

- exploring
- looking for patterns
A Bridge to What?

A bridge course should prepare students to succeed in mathematics. That means we need to prepare them to succeed in

- exploring
- looking for patterns
- guessing
A Bridge to What?

A bridge course should prepare students to succeed in mathematics. That means we need to prepare them to succeed in

- exploring
- looking for patterns
- guessing
- making mistakes
A Bridge to What?

A bridge course should prepare students to succeed in mathematics. That means we need to prepare them to succeed in

- exploring
- looking for patterns
- guessing
- making mistakes
- learning about universal truths
How do we Build that Bridge?

Provide activities that promote exploration
Reward taking chances
Don't penalize students’ mistakes (as long as they learn from them!)
How do we Build that Bridge?

- Provide activities that promote exploration
How do we Build that Bridge?

- Provide activities that promote exploration
- Reward taking chances
How do we Build that Bridge?

- Provide activities that promote exploration
- Reward taking chances
- Don’t penalize students’ mistakes
How do we Build that Bridge?

- Provide activities that promote exploration
- Reward taking chances
- Don’t penalize students’ mistakes (as long as they learn from them!)
Points-Free Grading

Points-free grading [1]:

Points-free grading [1]:
Points-Free Grading

Points-free grading [1]:

- Shifts the focus from getting it right the first time to getting it right.
Points-Free Grading

Points-free grading [1]:
- Shifts the focus from getting it right the first time to getting it right.
- Doesn’t penalize early mistakes
Points-Free Grading

Points-free grading [1]:

- Shifts the focus from getting it right the first time to getting it right.
- Doesn’t penalize early mistakes
- Encourages taking risks
Sums of Consecutive Integers

- Calculate $29 + 30 + 31$.
- Calculate $21 + 22 + 23 + 24$.
- Add up the numbers from 16 to 20. That is, calculate $16 + 17 + 18 + 19 + 20$.
- Add up the numbers from 6 to 14.
- Calculate the sums of other sequences of consecutive integers.
- What pattern(s) do you observe?
- Can you extend any of the patterns?
- How would you describe or explain the patterns?
- Is there anything special about any of the numbers?
- What questions do the patterns raise for you? What else would you like to know?
Conjectures From Sums of Integers

What is Math?

A Bridge to What?

How do we Build that Bridge?

The Environment

Two Example Activities

Conclusions

References
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
- The sum of any 11 consecutive integers is divisible by 11.
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
- The sum of any 11 consecutive integers is divisible by 11.
- For any positive integer n, the sum of any n consecutive integers is divisible by n.
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
- The sum of any 11 consecutive integers is divisible by 11.
- For any positive integer \(n \), the sum of any \(n \) consecutive integers is divisible by \(n \).
- For any positive odd integer \(n \), the sum of any \(n \) consecutive integers is divisible by \(n \).
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
- The sum of any 11 consecutive integers is divisible by 11.
- For any positive integer n, the sum of any n consecutive integers is divisible by n.
- For any positive odd integer n, the sum of any n consecutive integers is divisible by n.
- Any odd number can be written as a sum of consecutive integers.
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
- The sum of any 11 consecutive integers is divisible by 11.
- For any positive integer n, the sum of any n consecutive integers is divisible by n.
- For any positive odd integer n, the sum of any n consecutive integers is divisible by n.
- Any odd number can be written as a sum of consecutive integers.
- The number 90 can be written as a sum of consecutive integers in exactly four different ways.
Conjectures From Sums of Integers

- The sum of any three consecutive integers is divisible by 3.
- The sum of any 11 consecutive integers is divisible by 11.
- For any positive integer n, the sum of any n consecutive integers is divisible by n.
- For any positive odd integer n, the sum of any n consecutive integers is divisible by n.
- Any odd number can be written as a sum of consecutive integers.
- The number 90 can be written as a sum of consecutive integers in exactly four different ways.
- The number 90 can be written as a sum of consecutive positive integers in exactly four different ways.
Patterns in the Multiplication Table

Looking at the products in a 12×12 multiplication table:

- What patterns do you notice in how often numbers appear?
- Do you have any ideas about how you might predict how often a given number would appear in the table?
- What other questions do the patterns raise for you? What else would you like to know?
Conjectures From the Multiplication Table
Conjectures From the Multiplication Table

- Prime numbers appear exactly twice in the multiplication table.
Conjectures From the Multiplication Table

- Prime numbers appear exactly twice in the multiplication table.
- Perfect squares appear an odd number of times in the multiplication table.
Conjectures From the Multiplication Table

- Prime numbers appear exactly twice in the multiplication table.
- Perfect squares appear an odd number of times in the multiplication table.
- Only perfect squares appear an odd number of times in the multiplication table.
Conjectures From the Multiplication Table

- Prime numbers appear exactly twice in the multiplication table.
- Perfect squares appear an odd number of times in the multiplication table.
- Only perfect squares appear an odd number of times in the multiplication table.
- The numbers above right and below left a perfect square are one less than the perfect square.
Conjectures From the Multiplication Table

- Prime numbers appear exactly twice in the multiplication table.
- Perfect squares appear an odd number of times in the multiplication table.
- Only perfect squares appear an odd number of times in the multiplication table.
- The numbers above right and below left a perfect square are one less than the perfect square.
- The product of any pair of twin primes is always one less than a perfect square multiple of 36.
Conjectures From the Multiplication Table

- Prime numbers appear exactly twice in the multiplication table.
- Perfect squares appear an odd number of times in the multiplication table.
- Only perfect squares appear an odd number of times in the multiplication table.
- The numbers above right and below left a perfect square are one less than the perfect square.
- The product of any pair of twin primes is always one less than a perfect square multiple of 36.
- For any positive integer, \(n > 1 \), if the prime factorization of \(n \) is \(n = p_1^{e_1} \cdots p_k^{e_k} \), then \(n \) has \((e_1 + 1) \cdots (e_k + 1) \) distinct positive integer factors.
Conclusions
Conclusions

- Open-ended activities offer opportunities for exploration
Conclusions

- Open-ended activities offer opportunities for exploration
- Low-stakes assessment helps students be comfortable taking risks
Conclusions

- Open-ended activities offer opportunities for exploration
- Low-stakes assessment helps students be comfortable taking risks
- Conjecturing activities help students see proofs as natural, rather than as rituals
Conclusions

- Open-ended activities offer opportunities for exploration
- Low-stakes assessment helps students be comfortable taking risks
- Conjecturing activities help students see proofs as natural, rather than as rituals
- Creating good opportunities for conjecturing is hard but definitely worth it!
References
